Solve ode, dde & pde using matlab

Farida Mosally

Mathematics Department

King Abdulaziz University

2014

Outline

- 1. Ordinary Differential Equations (ode)
 - 1.1 Analytic Solutions
 - **1.2 Numerical Solutions**
- 2. Delay Differential Equations (dde)
- 3. Partial Differential Equations (pde)

Ordinary Differential Equations

Analytic Solutions

First Order Differential Equation

To solve a first order differential equation, say for example

$$y' = xy$$

rie Edit	Debug	Parallel	Desktop	Window	Help	1
16	¥ 🖻	間 ウ	🕫 🛛 🍅	🕑 🖻	0	C:\Program Files\MATLAB\R2011b\bin
Shortcuts	🛃 How to	5 bbA c	What's Ne	w		
>>	$\mathbf{v} =$	dsolu		$t = y_0$	7**	1 2 1
1516	1			1 1		L see d
У	=					
~~	_		(0)			
		$I = A \cap D$	1121			

Initial Value Problem

To solve an initial value problem, say,

$$y' = xy, y(1) = 1$$

1 N	MATLAB R2011b
File	Edit Debug Parallel Desktop Window Help
1	🚰 🔏 🐘 🛍 🤊 🛯 🍓 📆 🗐 📄 🎯 C\Program Files\MATLAB\R2011b\bin
: Sh	ortcuts 🛃 How to Add 🖪 What's New
fx	>> y = dsolve('Dy = y*x', 'y(1)=1', 'x')
	У =
	exp(x^2/2)/exp(1/2)

Suppose we want to plot the solution to get a rough idea of its behavior.

- >> x = linspace(0,1,20);
 >> z = eval(vectorize(y));
 >> plot(x,z)

Second and Higher Order Equations

Suppose we want to solve and plot the solution to the second order equation

$$y''(x) + 8y'(x) + 2y(x) = \cos(x); \qquad y(0) = 0, \ y'(0) = 1.$$
>> syms x, eqn = 'D2y + 8*Dy + 2*y = cos(x)';
ic = 'y(0) = 0, Dy(0) = 1';
y = dsolve(eqn,ic,'x')
y =
1/65*cos(x)+8/65*sin(x)+(-1/130+53/1820*14^(1/2))*exp((-4+14^(1/2))*x)
-1/1820*(53+14^(1/2))*14^(1/2)*exp(-(4+14^(1/2))*x)
-1/1820*(53+14^(1/2))*14^(1/2)*exp(-(4+14^(1/2))*x)
>> x = linspace(0,1,20);
>> z = eval(vectorize(y));
>> plot(x,z)

0.2

0

0.4

0.6

0.8

Ordinary Differential Equations

Numerical Solutions

MATLAB has a number of tools for numerically solving ordinary differential equations. In the following table we display <u>some</u> of them.

ode initial value problem solvers

Solver	Method used	Order of Accuracy	When to Use
ode45	Runge-Kutta (4,5) formula	Medium	Most of the time. This should be the first solver you try.
ode23	Runge-Kutta (2, 3) formula	Low	For problems with crude error tolerances or for solving moderate stiff problems.
ode113	Adams-Bashforth-Moulton solver	Low to high	For problems with stringent error tolerances or for solving computationally intensive problem
ode15s	Solver based on the numerical differentiation formulas	Low to medium	If ode45 is slow because the problem is stiff.
ode23s	Solver based on a modified Rosenbrock formula of order 2	Low	If using crude error tolerances to solve stiff systems and the mass matrix is constant.

Defining an ODE function

[outputs] = function handle(inputs) [t,state] = solver(@dstate,tspan,ICs,options) Matlab algorithm An array. The solution of Handle for function Vector that specifiecs the A vector of the the ODE (the values of interval of the solution (e.g., ode45, containing the initial conditions the state at every time). ode23) for the system derivatives (e.g., [t0:5:tf]) (row or column)

Defining an ODE function

sol = solver(odefun, [t0 tf], y0, options)

Example 1

y' = ty + y, y(0) = 1, $0 \le t \le 0.5$.

```
>> f=inline('t*y+y')
f =
```

Inline function: f(t,y) = t*y+y

>> [t,y]=ode45(f,[0 0.5],1);
>> plot(t,y)

First Order Equations with M-files

Example 2

 $dy/dx = xy^2 + y$, y(0) = 1, $x \in [0, 0.5]$.

```
function out = example2()
xspan = [0,.5];
y0 = 1;
[x,y]=ode23(@firstode,xspan,y0);
plot(x,y)
```

function yprime = firstode(x,y);
yprime = x*y^2 + y;

Solving systems of first-order ODEs

Example 3

$$\begin{array}{ll} y_1' = y_2 y_3, & y_1(0) = 0 \\ y_2' = -y_1 y_3, & y_2(0) = 1 \\ y_3' = -0.51 y_1 y_2, & y_3(0) = 1 \end{array}$$

function example3
tspan = [0 12];
y0 = [0; 1; 1];

% Solve the problem using ode45 ode45(@f,tspan,y0);

... Solving systems of first-order ODEs

To define each curve

function example3
tspan = [0 12];
y0 = [0; 1; 1];

```
% Solve the problem using ode45
[t,y] = ode45(@f,tspan,y0);
```


Boundary Value Problems

sol = bvp4c(odefun, bcfun, solinit)

Delay Differential Equations

Functions

dde23 Solve delay differential equations (DDEs) with constant delays

ddesd Solve delay differential equations (DDEs) with general delays

ddensd Solve delay differential equations (DDEs) of neutral type

dde23

Solve delay differential equations (DDEs) with constant delays

```
sol = dde23(ddefun,lags,history,tspan)
```

Example 4

$y_1'(t) = y_1(t-1)$	$y_1(t) = 1$	
$y_{2}'(t) = y_{1}(t-1) + y_{2}(t-0.2)$	$y_2(t) = 1$	for $t \leq 0$.
$y_{3}'(t) = y_{2}(t).$	$y_{3}(t) = 1$	

```
function ddex1
sol = dde23(@ddex1de,[1, 0.2],@ddex1hist,[0, 5]);
figure;
plot(sol.x,sol.y)
title('An example of Wille'' and Baker.');
xlabel('time t');
vlabel('solution v');
function s = ddex1hist(t)
% Constant history function for DDEX1.
s = ones(3, 1);
function dydt = ddex1de(t, y, Z)
% Differential equations function for DDEX1.
ylag1 = Z(:, 1);
ylaq2 = Z(:, 2);
dydt = [ ylag1(1)
         ylag1(1) + ylag2(2)
         y(2)
                             ];
```

```
y_{1}(t) = 1

y_{2}(t) = 1

y_{3}(t) = 1

y_{1}'(t) = y_{1}(t - 1)

y_{2}'(t) = y_{1}(t - 1) + y_{2}(t - 0.2)
```

 $y_{3}'(t) = y_{2}(t).$

Partial Differential Equations (pde)

pdepe

Solve initial-boundary value problems for parabolic-elliptic PDEs in 1-D

Syntax

- sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)
- sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,OPTIONS)

[sol,tsol,sole,te,ie] = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,OPTIONS)

Arguments

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)

ו	A parameter corresponding to the symmetry of the problem. m can be slab = 0,
	cylindrical =1, or spherical = 2.
defun	A handle to a function that defines the components of the PDE.
fun	A handle to a function that defines the initial conditions.
cfun	A handle to a function that defines the boundary conditions.
mesh	A vector [x0, x1,, xn], x0 < x1 < < xn.
span	A vector [t0, t1,, tf] , t0 < t1 < < tf.
ptions	Some <u>OPTIONS</u> of the underlying ODE solver are available, See <u>odeset</u> for details.

Description

PDE
$$c\left(x,t,u,\frac{\partial u}{\partial x}\right)\frac{\partial u}{\partial t} = x^{-m}\frac{\partial}{\partial x}\left(x^m f\left(x,t,u,\frac{\partial u}{\partial x}\right)\right) + s\left(x,t,u,\frac{\partial u}{\partial x}\right)$$

 $|\mathsf{C} \qquad u(x,t_0) = u_0(x)$

BC
$$p(x,t,u) + q(x,t)f\left(x,t,u,\frac{\partial u}{\partial x}\right) = 0$$

PDE

$$c\left(x,t,u,\frac{\partial u}{\partial x}\right)\frac{\partial u}{\partial t} = x^{-m}\frac{\partial}{\partial x}\left(x^{m}f\left(x,t,u,\frac{\partial u}{\partial x}\right)\right) + s\left(x,t,u,\frac{\partial u}{\partial x}\right)$$
$$\pi^{2}\frac{\partial u}{\partial t} = \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)$$

$$\frac{\mathsf{IC}}{u(x,t_0)} = u_0(x)$$

BC $p(x,t,u) + q(x,t)f\left(x,t,u,\frac{\partial u}{\partial x}\right) = 0$

ingle PDE

xample 1.

his example illustrates the straightforward formulation, computation, and plotting of the plution of a single PDE.

This equation holds on an interval $0 \le x \le 1$ for times $t \ge 0$. The PDE satisfies the initial condition

$$u(x,0) = \sin \pi x \qquad \text{IC} \ u_0$$

and boundary conditions

$$u(0,t) = 0$$

$$\pi e^{-t} + \frac{\partial u}{\partial x}(1,t) = 0$$
BC
$$pl = ul, \quad ql = 0$$

$$pr = \pi e^{-t}, \quad qr = 1$$

It is convenient to use subfunctions to place all the functions required by pdepe in a single M-file.

nction pdex1

```
= 0;
                                               function [c,f,s] = pdecfs(x,t,u,DuDx)
= linspace(0,1,20);
                                               c = pi^2;
= linspace(0,2,5);
                                               f = DuDx;
                                               s = 0;
L = pdepe(m,@pdecfs,@ic,@bc,x,t);
                                                  _____
= sol(:,:,1);
                                               function u0 = ic(x)
                                               u0 = sin(pi*x);
solution profile can also be illuminating.
                                               § _____
ure;
                                               function [pl,ql,pr,qr] = bc(xl,ul,xr,un)
t(x,u(end,:),'o',x,exp(-t(end))*sin(pi*x));
                                               pl = ul;
le('Solutions at t = 2.');
                                               ql = 0;
end('Numerical, 20 mesh points','Analytical',0);
                                              pr = pi * exp(-t);
pel('Distance x');
                                               qr = 1;
>el('u(x,2)');
```


References

1. http://www.mathworks.com/help/matlab/ref/pdepe.html

اتمنى ان تكوني إستفدتي