
Solve odeSolve odeSolve odeSolve ode, , , , ddeddeddedde & & & & pdepdepdepde using using using using

Farida Mosally

Mathematics Department

King Abdulaziz University

2014

using using using using matlabmatlabmatlabmatlab

Outline

1. Ordinary Differential Equations (ode)

1.1 Analytic Solutions

1.2 Numerical Solutions

2. Delay Differential Equations (dde

3. Partial Differential Equations (pde

Ordinary Differential Equations (ode)

dde)

pde)

Ordinary Differential
Equations

Analytic Solutions

Ordinary Differential
Equations

Analytic Solutions

First Order Differential EquationFirst Order Differential Equation

Suppose
get a rough idea

To solve an initial value problem, say,

Initial Value Problem

Suppose we want to plot the solution to
get a rough idea of its behavior.

To solve an initial value problem, say,

Initial Value Problem

Second and Higher Order Equations

Suppose we want to solve and plot the solution to the second order
equation

and Higher Order Equations

Suppose we want to solve and plot the solution to the second order

Numerical Solutions

Ordinary Differential Equations

Numerical Solutions

MATLAB has a number of tools for numerically solving ordinary
differential equations. In the following table we display

Numerical Solutions

Ordinary Differential Equations

Numerical Solutions

MATLAB has a number of tools for numerically solving ordinary
. In the following table we display some of them.

Solver Method used

ode45 Runge-Kutta (4,5) formula

ode23 Runge-Kutta (2, 3) formula

ode initial value problem

ode113 Adams-Bashforth-Moulton solver

ode15s Solver based on the numerical

differentiation formulas

ode23s Solver based on a modified Rosenbrock

formula of order 2

Order of

Accuracy

When to Use

Medium Most of the time. This should be the

first solver you try.

Low For problems with crude error

tolerances or for solving moderately

stiff problems.

initial value problem solvers

Low to high For problems with stringent error

tolerances or for solving

computationally intensive problems.

Low to

medium

If ode45 is slow because the

problem is stiff.

Solver based on a modified Rosenbrock Low If using crude error tolerances to

solve stiff systems and the mass

matrix is constant.

Defining an ODE functionfunction

sol = solver(odefun,[t

Defining an ODE function

Example 1

,[t0 tf],y0,options)

function

1.7

1.8

1.9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

First Order Equations with M

function out = example

xspan = [0,.5];

Example 2

xspan = [0,.5];

y0 = 1;

[x,y]=ode23(@firstode,xspan,y

plot(x,y)

function yprime = firstode

yprime = x*y^2 + y;

First Order Equations with M-files

out = example2()

(@firstode,xspan,y0);

firstode(x,y);

Solving systems of first
Example 3

function example3

tspan = [0 12];tspan = [0 12];

y0 = [0; 1; 1];

% Solve the problem using ode45

ode45(@f,tspan,y0);

% ------------------------------

function dydt = f(t,y)

dydt = [y(2)*y(3)

-y(1)*y(3)

-0.51*y(1)*y(2)];

Solving systems of first-order ODEs

0.6

0.8

1

0 2 4 6 8 10 12
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

… Solving systems of first

To define each curve

function example3

tspan = [0 12];

y0 = [0; 1; 1];

% Solve the problem using ode45

[t,y] = ode45(@f,tspan,y0);

plot(t,y(:,1),':r',t,y(:,2),'-.',t,y(:,

legend('y_1','y_2','y_3',3)

% ------------------------------

function dydt = f(t,y)

dydt = [y(2)*y(3)

-y(1)*y(3)

-0.51*y(1)*y(2)];

systems of first-order ODEs

0.6

0.8

1

(:,3))

0 2 4 6 8 10 12
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y
1

y
2

y
3

Boundary Value Problems

sol = bvp4c(odefun,bcfun,solinit

Value Problems

odefun,bcfun,solinit)

Delay Differential Equations

Functions

dde23 Solve delay differential equations (DDEs) with constant delays

ddesd Solve delay differential equations (DDEs) with general delaysddesd Solve delay differential equations (DDEs) with general delays

ddensd Solve delay differential equations (DDEs) of neutral type

Equations

Solve delay differential equations (DDEs) with constant delays

Solve delay differential equations (DDEs) with general delaysSolve delay differential equations (DDEs) with general delays

Solve delay differential equations (DDEs) of neutral type

dde23

Solve delay differential equations (DDEs) with constant delays

sol = dde23(ddefun,lags,history,tspan

Example 4

Solve delay differential equations (DDEs) with constant delays

ddefun,lags,history,tspan)

for t ≤ 0.

function ddex1

sol = dde23(@ddex1de,[1, 0.2],@ddex1hist,[

figure;

plot(sol.x,sol.y)

title('An example of Wille'' and Baker.'

xlabel('time t');

ylabel('solution y');

function s = ddex1hist(t)

% Constant history function for DDEX1.

function dydt = ddex1de(t,y,Z)

% Differential equations function for DDEX

ylag1 = Z(:,1);

ylag2 = Z(:,2);

dydt = [ylag1(1)

ylag1(1) + ylag2(2)

y(2)];

s = ones(3,1);

hist,[0, 5]);

'' and Baker.');

% Differential equations function for DDEX1.

Partial Differential Equations (

pdepe
Solve initial-boundary value problems for parabolic-elliptic PDEs in

Syntax

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,OPTIONS

[sol,tsol,sole,te,ie] = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,OPTIONS

Partial Differential Equations (pde)

elliptic PDEs in 1-D

m,pdefun,icfun,bcfun,xmesh,tspan,OPTIONS)

m,pdefun,icfun,bcfun,xmesh,tspan,OPTIONS)

Arguments

m A parameter corresponding to the symmetry of the problem.

cylindrical =1, or spherical = 2.

pdefun A handle to a function that defines the components of the PDE.

icfun A handle to a function that defines the initial conditions.

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan

bcfun A handle to a function that defines the boundary conditions.

xmesh A vector [x0, x1, ..., xn], x0 < x1 < ... < xn.

tspan A vector [t0, t1, ..., tf] , t0 < t1 < ... < tf.

options Some OPTIONS of the underlying ODE solver are

A parameter corresponding to the symmetry of the problem. m can be slab = 0,

A handle to a function that defines the components of the PDE.

A handle to a function that defines the initial conditions.

m,pdefun,icfun,bcfun,xmesh,tspan)

A handle to a function that defines the boundary conditions.

.

of the underlying ODE solver are available, See odeset for details.

Description

PDE

IC

BC

Example 1.

This example illustrates the straightforward formulation, computation, and plotting of the
solution of a single PDE.

Single PDE

example illustrates the straightforward formulation, computation, and plotting of the

function pdex1

m = 0;

x = linspace(0,1,20);

t = linspace(0,2,5);

sol = pdepe(m,@pdecfs,@ic,@bc,x,t);

u = sol(:,:,1);

% A solution profile can also be illuminating.

figure;

plot(x,u(end,:),'o',x,exp(-t(end))*sin(pi*x));

title('Solutions at t = 2.');

legend('Numerical, 20 mesh points','Analytical',

xlabel('Distance x');

ylabel('u(x,2)');

function [c,f,s] = pdecfs(x,t,u,DuDx)

c = pi^2;

f = DuDx;

s = 0;

% --------------------------------

function u0 = ic(x)

u0 = sin(pi*x);

,0);

% --------------------------------

function [pl,ql,pr,qr] = bc(xl,ul,xr,ur,t

pl = ul;

ql = 0;

pr = pi * exp(-t);

qr = 1;

0.06

0.08

0.1

0.12

0.14
Solutions at t

(x
,2

)

Numerical

Analytical

0 0.1 0.2 0.3 0.4
-0.02

0

0.02

0.04

Distance x

u
(x

Solutions at t = 2.

Numerical, 20 mesh points

Analytical

0.5 0.6 0.7 0.8 0.9 1

Distance x

References

1. http://www.mathworks.com/help/matlab/ref/pdepe.html://www.mathworks.com/help/matlab/ref/pdepe.html

اتمنى ان تكوني إستفدتي

