COURSE PORTFOLIO

FACULTY OF SCIENCE

MATHEMATICS DEPARTMENT

COURSE NAME:	Numerical Analysis						
COURSE NUMBER:	M	A	T	H	4	2	1
SEMESTER/YEAR:	Second semester			1435/1436			
DATE:	5/4/1436 – 17/8/1436h.						

ACADEMIC ASSESSMENT UNIT

Instructor Information

Name of the instructor: Dr. Farida Mosally

Office location: Room: C008 Office hours:

Building: 7

	Sun	Mon	Tue	Wed	
Time		11 - 1		11 - 1	

Contact number(s): 6400000 Extension 63622

E-mail address(s): fmusaly@kau.edu.sa

Course website address: http://www.kaau.edu.sa/fmusaly

Course Information

Cours	se meeting	g place & times:				
Section	Place	Sun	Mon	Tue	Wed	
XAR	L08/C		9:30-11		8 - 9	
					9:30-11	

Objectives of the course

- To provide the numerical methods of solving the non-linear equations, interpolation, differentiation, and integration.
- To improve the student's skills in numerical methods by using the numerical analysis software and computer facilities.

Course description

- Numerical solutions of non-linear equations: bisection method, Newton-Raphson method, secant method, convergence.
- Interpolation: Lagrange, Newton divided difference formulas.
- Numerical differentiation: first derivative, higher derivatives.
- Numerical integration: Trapezoidal rule, Simpson's rule, Gaussian integration.
- Algorithms and programs.

Main text book

R. Burden, and J. D. Faires, Numerical Analysis, PWS-Kent Publishers, 8th.edition.

Subsidiary Books

- V. A. Patel, Numerical Analysis, Harcourt Brace, College Publishers, (1994).
- W. Cheney and D. Kincaid, Numerical Mathematics and Computing, Brooks/Cole Publishing Company, (2003).

- محمد سعيد حمودة: التحليل العددي، جده – دار زهران (1995).

ACADEMIC ASSESSMENT UNIT

Course prerequisites and requirements:

Course name	Course number
Mathematical Software and Programming	Math 331
Differential Equations I	Math204
Linear Algebra	Math 241

Course Grading:

	Quiz 1	First Exam	Quiz 2	Second Exam	Final Exam	Home work
Date	W:29/4/1436h	W:20/5/1436h	W:26/6/1436h	W: 10/7/1436h	M: 22/7/1436h	
Mark	7	20	7	20	40	6

Expectations from students:

- 1- Keeping on the prudish uniform.
- 2- Don't open mobile during the lecture.
- 3- The student whose absent more than 5-times not allowed to enter the final exam.
- 4- The student whose absent in one periodic examination with acceptable excuse add its mark to the final exam.
- 5- Decreasing one mark to 2 absent without reason.
- 6- The incomplete exam is for the student if she enters all the periodic examinations and with report medicinal massages from the governmental direction.

السياسات ومتطلبات المادة

- 1. مسئولية الطالبة
- الطالبة التي تتجاوز نسبة غيابها عن 20% (5) بدون عذر مقبول لا يحق لها دخول الاختبار النهائي.
 - 3. حضور الآختبارات وتقديم الواجبات في الأوقات المتفق عليها.
- 4. لا تعاد الاختبارات بتاتا الطالبة التي تتغيب عن اختبار ما بعذر تقبله أستاذة المادة تضاف درجة الاختبار إلى الاختبار
- . تخصم درجة عن كل مرتين غياب بدون عذر. 5. يشترط لحصول الطالبة على درجة غير مكتمل تقديم عذرا مقبول من الشؤون التعليمية وحضور جميع الاختبارات. لا تتجاوز نسبة غيابها عن 20%.
- 7. عقوبة الغش في الاختبارات الدورية والنصفية الرسوب في المادة وعقوبة الغش في الاختبار النهائي الرسوب في الفصل

ACADEMIC ASSESSMENT UNIT

Course Schedule

Week	Date	Topic	What is Due?
1	11/11/1435h	Introduction to the course and review to	
		MATLAB	
2-4		Chapter 1	
		Review of calculus	
		Numerical Solution of equation in one	Ex. Set 2.1
		variable	1,5,7,9,12, 13,15
		Bisection method	Ex. Set 2.2
		Fixed point method	1,2,3,5,8,9,11
		Newton-Raphson method	Ex. Set 2.3
		Secant method	2,3,5(a,b), 6(a,b,e,f),
0 1 1		Securit metrica	7(a,b,e,f), 14,21, 25
Quiz 1		T	T 0 1 7 1
<i>-</i> -		Iterative Techniques in Matrix Algebra	Ex. Set 7.1
5-7		Norms of Vectors and Matrices	1,2,3,4
		• <u>Iterative Techniques for Solving Linear</u>	Ex. Set 7.3
		Systems	1(a,b), 2,3,4.
		Numerical Solutions of Nonlinear Systems of	Ex. set 10.1
		Equations	5, 7(b), 8(c), 10(c) Ex. set 10.2
		• Fixed Points	7(a, b)
		<u>Newton's Method</u>	7(a, b)
First E	xam		
		Interpolation and polynomial	Ex. Set 3.1
8-9		approximation	1, 3, 5(a,b), 7(a), 9(a,b),
		Interpolation and Lagrange polynomial	17, 19(c), 20, 21.
		Neville's Method	Ex. Set 3.2
			3(b), 5(b), 7, 12, 17, 19
		 Divided difference 	
		 Equally Spaced Points 	
Quiz 2			
		Numerical Differentiation	Ex. Set 4.1
10-11		• First derivative,	1, 3, 5(a,b), 7(a,b).
		three Point Formula	20
		 Higher derivatives 	
Second	Exam		I
		Numerical Integration	Ex. Set 4.3
12-14			1(a,b,c), 3(a,b,c)
12 1 1		 Numerical integration Trapezoidal Rule 	5(a,b,c), 7(a,b,c), 22
		Simpson's Rule	Ex. Set 4.4
			1(a,b,c), 3(a,b,c), 7(a,b)
		Composite numerical integration Conscient quedrature formulas	Ex. Set 4.7
		Goussian quadrature formulas	1(a), 5.
Final E	xam		1 377