### Interpolation & Polynomial Approximation Divided Differences

# Outline

- 1. Introduction to Divided Differences
- 2. The Divided Difference Notation
- 3. Newton's Divided Difference Interpolating Polynomial
- 4. Example and Matlab program

Suppose that  $P_n(x)$  is the *n*th Lagrange polynomial that agrees with the function f at the distinct numbers  $x_0, x_1, \ldots, x_n$ . Although this polynomial is unique, there are alternate algebraic representations that are useful in certain situations. The divided differences of f with respect to  $x_0, x_1, \ldots, x_n$  are used to express  $P_n(x)$  in the form

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \dots (x - x_{n-1}), \quad (3.5)$$

for appropriate constants  $a_0, a_1, \ldots, a_n$ . To determine the first of these constants,  $a_0$ , note that if  $P_n(x)$  is written in the form of Eq. (3.5), then evaluating  $P_n(x)$  at  $x_0$  leaves only the constant term  $a_0$ ; that is,

$$a_0 = P_n(x_0) = f(x_0).$$

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \dots (x - x_{n-1}), \quad (3.5)$$
$$a_0 = P_n(x_0) = f(x_0).$$

Similarly, when P(x) is evaluated at  $x_1$ , the only nonzero terms in the evaluation of  $P_n(x_1)$  are the constant and linear terms,

$$f(x_0) + a_1(x_1 - x_0) = P_n(x_1) = f(x_1);$$
  
$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$
 (3.6)

We now introduce the divided-difference notation, which is related to Aitken's  $\Delta^2$  notation used in Section 2.5. The *zeroth divided difference* of the function f with respect to  $x_i$ , denoted  $f[x_i]$ , is simply the value of f at  $x_i$ :

$$f[x_i] = f(x_i).$$
 (3.7)

The remaining divided differences are defined recursively; the *first divided difference* of f with respect to  $x_i$  and  $x_{i+1}$  is denoted  $f[x_i, x_{i+1}]$  and defined as

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}.$$
(3.8)

The second divided difference,  $f[x_i, x_{i+1}, x_{i+2}]$ , is defined as

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}.$$

Similarly, after the (k - 1)st divided differences,

 $f[x_i, x_{i+1}, x_{i+2}, \dots, x_{i+k-1}]$  and  $f[x_{i+1}, x_{i+2}, \dots, x_{i+k-1}, x_{i+k}]$ ,

have been determined, the *k*th divided difference relative to  $x_i, x_{i+1}, x_{i+2}, \ldots, x_{i+k}$  is

$$f[x_i, x_{i+1}, \dots, x_{i+k-1}, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_i}.$$
 (3.9)

The process ends with the single nth divided difference,

$$f[x_0, x_1, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}.$$

# **Divided Differences Table**

| x                     | f(x)     | First<br>divided differences                      | Second<br>divided differences                                    | Third<br>divided differences                                                    |
|-----------------------|----------|---------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------|
| <i>x</i> <sub>0</sub> | $f[x_0]$ | $f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{f[x_0]}$    |                                                                  |                                                                                 |
| <i>x</i> <sub>1</sub> | $f[x_1]$ | $f[x_2] - f[x_1]$                                 | $f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$ | $f[x_1, x_2, x_3] - f[x_0, x_1, x_2]$                                           |
| <i>x</i> <sub>2</sub> | $f[x_2]$ | $f[x_1, x_2] = \frac{f[x_1, x_2]}{x_2 - x_1}$     | $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$ | $f[x_0, x_1, x_2, x_3] = \frac{f[x_0, x_1, x_2, x_3]}{x_3 - x_0}$               |
| $\frac{x_3}{x_3}$     | $f[x_3]$ | $f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$ | $f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_1 - x_2}$ | $f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$ |
| r                     | fly 1    | $f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$ | $f[x_1, x_2] = \frac{f[x_4, x_5] - f[x_3, x_4]}{f[x_1, x_2]}$    | $f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_2}$ |
| <i>A</i> 4            | J [X4]   | $f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$ | $y_{[x_3, x_4, x_5]} = \frac{x_5 - x_3}{x_5 - x_3}$              |                                                                                 |
| <i>x</i> <sub>5</sub> | $f[x_5]$ |                                                   |                                                                  |                                                                                 |

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \dots (x - x_{n-1}), \quad (3.5)$$

$$a_0 = f(x_0) = f[x_0], \qquad a_1 = f[x_0, x_1], \qquad a_k = f[x_0, x_1, x_2, \dots, x_k],$$

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \cdots (x - x_{k-1}).$$
(3.10)

#### **Newton's Divided-Difference Formula**

#### Example 1

The following table lists values of a function *f* at various points.

| x | 0.6  | 1.0  | 1.2  | 1.4  |
|---|------|------|------|------|
| f | 0.36 | 3.00 | 5.76 | 9.80 |

- a) Use Newton's Divided-Difference Formula of degrees one, two, and three to approximate f(1.1).
- b) Find the absolute error if  $f(x) = 5x^3 2x^2$ .

#### Solution

| x   | f    | <i>f</i> <sub>1</sub> []                           |                                     |   |
|-----|------|----------------------------------------------------|-------------------------------------|---|
| 0.6 | 0.36 |                                                    |                                     |   |
|     |      | $f[x_0, x_1] = \frac{3.0 - 0.36}{1.0 - 0.6} = 6.6$ |                                     |   |
| 1.0 | 3.00 |                                                    | $\frac{13.8 - 6.6}{1.2 - 0.6} = 12$ |   |
|     |      | $\frac{5.76 - 3.0}{1.2 - 1} = 13.8$                |                                     | 5 |
| 1.2 | 5.76 |                                                    | 16                                  |   |
|     |      | $\frac{9.8 - 5.76}{1.4 - 1.2} = 20.2$              |                                     |   |
| 1.4 | 9.80 |                                                    |                                     |   |

# Solution $P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \cdots (x - x_{k-1}).$

A polynomial of degree 1

$$p_1(1.1) = 0.36 + 6.6^*(1.1-0.6) + = 3.6600$$

### To find the error compute $f(1.1) = 5 \times 1.1^3 - 2 \times 1.1^2 = 4.2350$

$$|f - p_1| = |4.235 - 3.66| = 0.5750.$$

# Solution $P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \cdots (x - x_{k-1}).$

A polynomial of degree 2  $p_2(1.1) = 0.36 + 6.6(1.1-0.6) + 12(1.1-0.6)(1.1-1) = 4.2600$  $|f - p_2| = |4.235 - 4.26| = 0.0250.$ 

A polynomial of degree 3  

$$p_3(1.1) = 0.36 + 6.6(1.1 - 0.6) + 12(1.1 - 0.6)(1.1 - 1)$$
  
 $+5(1.1 - 0.6)(1.1 - 1)(1.1 - 1.2) = 4.2350$   
 $|f - p_3| = 0.0$ 

### Matlab Program

#### Write Matlab program for Example 1



#### Newton's Divided-Difference Formula

To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n+1) distinct numbers  $x_0, x_1, \ldots, x_n$  for the function f:

**INPUT** numbers  $x_0, x_1, \ldots, x_n$ ; values  $f(x_0), f(x_1), \ldots, f(x_n)$  as  $F_{0,0}, F_{1,0}, \ldots, F_{n,0}$ .

**OUTPUT** the numbers  $F_{0,0}, F_{1,1}, \ldots, F_{n,n}$  where

$$P_n(x) = F_{0,0} + \sum_{i=1}^n F_{i,i} \prod_{j=0}^{i-1} (x - x_j). \quad (F_{i,i} \text{ is } f[x_0, x_1, \dots, x_i].)$$

Step 1 For 
$$i = 1, 2, ..., n$$
  
For  $j = 1, 2, ..., i$   
set  $F_{i,j} = \frac{F_{i,j-1} - F_{i-1,j-1}}{x_i - x_{i-j}}$ .  $(F_{i,j} = f[x_{i-j}, ..., x_i].)$   
Step 2 OUTPUT  $(F_{0,0}, F_{1,1}, ..., F_{n,n})$ ;  
STOP.

### Matlab Program

### Output

F =

| 0.3600 | 0       | 0       | 0      |
|--------|---------|---------|--------|
| 3.0000 | 6.6000  | 0       | 0      |
| 5.7600 | 13.8000 | 12.0000 | 0      |
| 9.8000 | 20.2000 | 16.0000 | 5.0000 |

s =

4.2350

### Theorem

Suppose that  $f \in C^n[a, b]$  and  $x_0, x_1, \ldots, x_n$  are distinct numbers in [a, b]. Then a number  $\xi$  exists in (a, b) with

$$f[x_0, x_1, \ldots, x_n] = \frac{f^{(n)}(\xi)}{n!}.$$

**Proof** Let

$$g(x) = f(x) - P_n(x).$$

Since  $f(x_i) = P_n(x_i)$  for each i = 0, 1, ..., n, the function g has n+1 distinct zeros in [a, b]. Generalized Rolle's Theorem 1.10 implies that a number  $\xi$  in (a, b) exists with  $g^{(n)}(\xi) = 0$ , so

$$0 = f^{(n)}(\xi) - P_n^{(n)}(\xi).$$

Since  $P_n(x)$  is a polynomial of degree *n* whose leading coefficient is  $f[x_0, x_1, \ldots, x_n]$ ,

$$P_n^{(n)}(x) = n! f[x_0, x_1, \dots, x_n],$$

for all values of x. As a consequence,

$$f[x_0, x_1, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}.$$

#### Definition

For a given sequence  $\{p_n\}_{n=0}^{\infty}$ , the forward difference  $\Delta p_n$  (read "delta  $p_n$ ") is defined by

$$\Delta p_n = p_{n+1} - p_n, \quad \text{for } n \ge 0.$$

Higher powers of the operator  $\Delta$  are defined recursively by

$$\Delta^k p_n = \Delta(\Delta^{k-1} p_n), \quad \text{for } k \ge 2$$

### Example

### Constrict the forward difference table for the give data

| x   | f     |  |  |  |
|-----|-------|--|--|--|
| 1.0 | 3     |  |  |  |
|     |       |  |  |  |
| 1.2 | 5.76  |  |  |  |
|     |       |  |  |  |
| 1.4 | 9.80  |  |  |  |
|     |       |  |  |  |
| 1.6 | 15.36 |  |  |  |

#### Example

### Constrict the forward difference table for the give data

| x   | f  | Δ                             | $\Delta^2$                    | $\Delta^3$            |
|-----|----|-------------------------------|-------------------------------|-----------------------|
| 1.0 | 3  |                               |                               |                       |
|     |    | $\Delta f(x_0) = 6 - 3 = 3$   |                               |                       |
| 1.2 | 6  |                               | $\Delta^2 f(x_0) = 4 - 3 = 1$ |                       |
|     |    | $\Delta f(x_1) = 10 - 6 = 4$  |                               | $\Delta^3 f(x_0) = 0$ |
| 1.4 | 10 |                               | $\Delta^2 f(x_1) = 5 - 4 = 1$ |                       |
|     |    | $\Delta f(x_2) = 15 - 10 = 5$ |                               |                       |
| 1.6 | 15 |                               |                               |                       |

$$h = x_{i+1} - x_i, \text{ for each } i = 0, 1, \dots, n-1$$
  

$$let x = x_0 + sh. \qquad x - x_i = (s - i)h.$$
  

$$P_n(x) = P_n(x_0 + sh) = f[x_0] + shf[x_0, x_1] + s(s - 1)h^2 f[x_0, x_1, x_2]$$
  

$$+ \dots + s(s - 1) \dots (s - n + 1)h^n f[x_0, x_1, \dots, x_n]$$
  

$$= f[x_0] + \sum_{k=1}^n s(s - 1) \dots (s - k + 1)h^k f[x_0, x_1, \dots, x_k].$$

Using binomial-coefficient notation,

$$\binom{s}{k} = \frac{s(s-1)\cdots(s-k+1)}{k!},$$

we can express  $P_n(x)$  compactly as

$$P_n(x) = P_n(x_0 + sh) = f[x_0] + \sum_{k=1}^n \binom{s}{k} k! h^k f[x_0, x_1, \dots, x_k]$$

#### **Forward Differences**

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{1}{h}(f(x_1) - f(x_0)) = \frac{1}{h}\Delta f(x_0)$$
$$f[x_0, x_1, x_2] = \frac{1}{2h} \left[\frac{\Delta f(x_1) - \Delta f(x_0)}{h}\right] = \frac{1}{2h^2}\Delta^2 f(x_0),$$

and, in general,

$$f[x_0, x_1, \ldots, x_k] = \frac{1}{k!h^k} \Delta^k f(x_0).$$

**Newton Forward-Difference Formula** 

$$P_n(x) = f(x_0) + \sum_{k=1}^n {\binom{s}{k}} \Delta^k f(x_0)$$

### Example 2

- a) Use the Newton forward-difference formula to construct interpolating polynomials of degree three or less for the following data.
- b) Approximate f(1.5).



#### **Solution**

$$P_n(x) = f(x_0) + \sum_{k=1}^n \binom{s}{k} \Delta^k f(x_0)$$

| x   | f  | Δ | Δ <sup>2</sup> | Δ <sup>3</sup> |
|-----|----|---|----------------|----------------|
| 1.0 | 3  |   |                |                |
|     |    | 3 |                |                |
| 1.2 | 6  |   | 1              |                |
|     |    | 4 |                | 0              |
| 1.4 | 10 |   | 1              |                |
|     |    | 5 |                |                |
|     |    |   |                |                |

$$p_3 = 3 + 3{\binom{s}{1}} + {\binom{s}{2}} = 3 + 3s + \frac{s(s-1)}{2}$$

$$= 3 + 3s + \frac{1}{2}(s^2 - s) = 3 + 3.5s + 0.5s^2$$

$$s = \frac{x - x_0}{h} = \frac{x - 1}{0.2}$$

$$p_3 = 3 + 3.5 \frac{x - 1}{0.2} + 0.5 \left(\frac{x - 1}{0.2}\right)^2$$

$$1.5 - 1 = (1.5 - 1)^2$$

$$p_3(1.5) = 3 + 3.5 \frac{1.5 - 1}{0.2} + 0.5 \left(\frac{1.5 - 1}{0.2}\right)^2$$