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Fixed-Point Iteration

Functional (Fixed-Point) Iteration

Now that we have established a condition for which g(x) has a unique
fixed point in /, there remains the problem of how to find it. The
technique employed is known as fixed-point iteration.
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Functional (Fixed-Point) Iteration

Now that we have established a condition for which g(x) has a unique
fixed point in /, there remains the problem of how to find it. The
technique employed is known as fixed-point iteration.

Basic Approach

@ To approximate the fixed point of a function g, we choose an initial
approximation pp and generate the sequence {pn}7° , by letting
pn=9(pn_1), foreach n > 1.
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Now that we have established a condition for which g(x) has a unique
fixed point in /, there remains the problem of how to find it. The
technique employed is known as fixed-point iteration.

Basic Approach

@ To approximate the fixed point of a function g, we choose an initial
approximation pp and generate the sequence {pn}7° , by letting
pn=9(pn_1), foreach n > 1.

@ If the sequence converges to p and g is continuous, then

p=lim po = lim g(ps1) =g (im ps1) = g(p).

and a solution to x = g(x) is obtained.
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Fixed-Point Iteration

Functional (Fixed-Point) Iteration

Now that we have established a condition for which g(x) has a unique
fixed point in /, there remains the problem of how to find it. The
technique employed is known as fixed-point iteration.

Basic Approach

@ To approximate the fixed point of a function g, we choose an initial
approximation pp and generate the sequence {pn}7° , by letting
pn=9(pn_1), foreach n > 1.

@ If the sequence converges to p and g is continuous, then

p=lim po = lim g(ps1) =g (im ps1) = g(p).

and a solution to x = g(x) is obtained.
@ This technique is called fixed-point, or functional iteration.

Numerical Analysis (Chapter 2) Fixed-Point Iteration Il R L Burden & J D Faires



Fixed-Point Iteration

Functional (Fixed-Point) Iteration
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Fixed-Point Iteration

Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

To find the fixed point of g in an interval [a, b], given the equation
x = g(x) with an initial guess py € [a, b]:
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Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

To find the fixed point of g in an interval [a, b], given the equation
x = g(x) with an initial guess py € [a, b]:
1. n=1;
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Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

To find the fixed point of g in an interval [a, b], given the equation
x = g(x) with an initial guess py € [a, b]:
1. n=1;

2. pn=9(Pn-1);
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Fixed-Point Iteration

Functional (Fixed-Point) Iteration

Fixed-Point Algorithm
To find the fixed point of g in an interval [a, b], given the equation
x = g(x) with an initial guess py € [a, b]:

1. n=1;

2. Pn=9(Pn-1);

3. If |pn — pn_1| < e then 5;
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Fixed-Point Iteration

Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

To find the fixed point of g in an interval [a, b], given the equation
x = g(x) with an initial guess py € [a, b]:

1. n=1;

2. pn = 9(Pn-1);

3. If |pn — pn_1| < e then 5;

4. n—n+1;goto 2.
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Fixed-Point Iteration

Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

To find the fixed point of g in an interval [a, b], given the equation
x = g(x) with an initial guess py € [a, b]:

1. n=1;

2. Pn=9(Pn-1);

3. If |pn — pn_1| < e then 5;

4. n—n+1;goto 2.

5. End of Procedure.
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Fixed-Point Iteration

A Single Nonlinear Equation

The equation
XX +4x2-10=0

has a unique root in [1,2]. Its value is approximately 1.365230013.
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Fixed-Point Iteration

f(x)=x3+4x2—-10=00n[1,2]

14
y=1f(x) = X%+ 4x% -10
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f(x)=x3+4x2—-10=00n[1,2]

Possible Choices for g(x)

@ There are many ways to change the equation to the fixed-point
form x = g(x) using simple algebraic manipulation.
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Fixed-Point Iteration

f(x)=x3+4x2—-10=00n[1,2]

Possible Choices for g(x)

@ There are many ways to change the equation to the fixed-point
form x = g(x) using simple algebraic manipulation.

@ For example, to obtain the function g described in part (c), we can
manipulate the equation x® 4+ 4x2 — 10 = 0 as follows:

4x> =10—x3, so XZ:%(1O—X3), and x:i%(10—x3)1/2.
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Fixed-Point Iteration

f(x)=x3+4x2—-10=00n[1,2]

Possible Choices for g(x)

@ There are many ways to change the equation to the fixed-point
form x = g(x) using simple algebraic manipulation.

@ For example, to obtain the function g described in part (c), we can
manipulate the equation x® 4+ 4x2 — 10 = 0 as follows:

4x> =10—x3, so XZ:%(1O—X3), and x:i%(10—x3)1/2.

@ We will consider 5 such rearrangements and, later in this section,
provide a brief analysis as to why some do and some not
converge to p = 1.365230013.
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Fixed-Point Iteration

Solving f(x) = x3 +4x2 — 10

5 Possible Transpositions to x = g(x)

x=gi1(x) = x—x3—4x>+10
10
X=g(x) = 7—4x
1 3
x=g3(x) = > 10 — x
10
X=0(X) = \7 5
x3+4x2-10
X=X = X" Tae gy

Numerical Analysis (Chapter 2) Fixed-Point Iteration Il R L Burden & J D Faires



Fixed-Point Iteration

Numerical Results for f(x) = x3 + 4x2 — 10

g3

ga

gs

n g1 9
0 15 1.5
1 -0.875 0.8165
2 6.732 2.9969
3 —469.7 (~8.65)1/2
4 1.03x 108

5

10

15

20

25

1.5

1.286953768
1.402540804
1.345458374
1.375170253
1.360094193
1.365410062
1.365223680
1.365230236
1.365230006
1.365230013

1.5

1.348399725
1.367376372
1.364957015
1.365264748
1.365225594
1.365230014
1.365230013

1.5

1.373333333
1.365262015
1.365230014
1.365230013
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Fixed-Point Iteration

Solving f(x) = x3 +4x2 — 10

X =go(X) = \/1)?7 Does not Converge

X =g3(x) = % V10 — x3 Converges after 31 lterations
10 ,
X =g4(x) = A Converges after 12 lterations
3 2 _
X=0g5(x)=x— W Converges after 5 Iterations
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Convergence Criteria

Outline

9 Convergence Criteria for the Fixed-Point Method
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Convergence Criteria

Functional (Fixed-Point) Iteration

A Crucial Question

@ How can we find a fixed-point problem that produces a sequence
that reliably and rapidly converges to a solution to a given
root-finding problem?
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Convergence Criteria

Functional (Fixed-Point) Iteration

A Crucial Question

@ How can we find a fixed-point problem that produces a sequence
that reliably and rapidly converges to a solution to a given
root-finding problem?

@ The following theorem and its corollary give us some clues
concerning the paths we should pursue and, perhaps more
importantly, some we should reject.
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Convergence Criteria

Functional (Fixed-Point) Iteration

Convergence Result

Let g € CJa, b] with g(x) € [a, b] for all x € [a, b]. Let g'(x) exist on
(a, b) with

lgd(x)| < k<1, vV x € [a,b].
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Convergence Criteria

Functional (Fixed-Point) Iteration

Convergence Result

Let g € CJa, b] with g(x) € [a, b] for all x € [a, b]. Let g'(x) exist on
(a, b) with
(X)) <k<1, Vxe]lab

If pp is any point in [a, b] then the sequence defined by

pn=9(Pn-1), n=>1,

will converge to the unique fixed point p in [a, b].
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Convergence Criteria

Functional (Fixed-Point) Iteration

Proof of the Convergence Result
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Convergence Criteria

Functional (Fixed-Point) Iteration

Proof of the Convergence Result

@ By the Uniquenes Theorem, a unique fixed point exists in [a, b].

Numerical Analysis (Chapter 2) Fixed-Point Iteration Il R L Burden & J D Faires 16 /54



Convergence Criteria

Functional (Fixed-Point) Iteration

Proof of the Convergence Result

@ By the Uniquenes Theorem, a unique fixed point exists in [a, b].

@ Since g maps [a, b] into itself, the sequence {p,},-, is defined for
alln> 0 and p, € [a, b] for all n.
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Convergence Criteria

Functional (Fixed-Point) Iteration

Proof of the Convergence Result

@ By the Uniquenes Theorem, a unique fixed point exists in [a, b].

@ Since g maps [a, b] into itself, the sequence {p,},-, is defined for
alln> 0 and p, € [a, b] for all n.

@ Using the Mean Value Theorem and the assumption that
|9 (x)| < k <1,V x € [a, b], we write

lon =Pl = 19(Pn-1) — 9(p)|
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Convergence Criteria

Functional (Fixed-Point) Iteration

Proof of the Convergence Result

@ By the Uniquenes Theorem, a unique fixed point exists in [a, b].

@ Since g maps [a, b] into itself, the sequence {p,},-, is defined for
alln> 0 and p, € [a, b] for all n.

@ Using the Mean Value Theorem and the assumption that
|9 (x)| < k <1,V x € [a, b], we write

lon—pl = [9(pn-1) — 9(P)|
< 1g'(9)] lpn-1 —pl
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Convergence Criteria

Functional (Fixed-Point) Iteration

Proof of the Convergence Result

@ By the Uniquenes Theorem, a unique fixed point exists in [a, b].

@ Since g maps [a, b] into itself, the sequence {p,},-, is defined for
alln> 0 and p, € [a, b] for all n.

@ Using the Mean Value Theorem and the assumption that
|9 (x)| < k <1,V x € [a, b], we write

Pn—p| = |9(Pn-1) — 9(p)|
< |9'()] lpn-1 - pl
< klpp-1—pl

where ¢ € (a, b).
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Convergence Criteria

Functional (Fixed-Point) Iteration

Proof of the Convergence Result (Cont'd)
Applying the inequality of the hypothesis inductively gives
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Functional (Fixed-Point) Iteration

Proof of the Convergence Result (Cont'd)
Applying the inequality of the hypothesis inductively gives

lon—p| < K|pr-1—p|
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Functional (Fixed-Point) Iteration

Proof of the Convergence Result (Cont'd)
Applying the inequality of the hypothesis inductively gives

Pn—pl < K|pn—1—p|

< K?|pnz — Pl
< K"|po - pl
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Convergence Criteria

Functional (Fixed-Point) Iteration

Proof of the Convergence Result (Cont'd)
Applying the inequality of the hypothesis inductively gives

lon—p| < K|pr-1—p|
< K?|pnz — Pl
< K"|po - pl
Since k < 1,
Jim_|pn —pl < lim k" |py — p| =0,

and {pn},, converges to p.
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Convergence Criteria

Functional (Fixed-Point) Iteration

Corrollary to the Convergence Result
If g satisfies the hypothesis of the Theorem, then

n

k
[P = Pl < 57— IP1 = Pol.

Numerical Analysis (Chapter 2) Fixed-Point Iteration Il R L Burden & J D Faires 18/54



Convergence Criteria

Functional (Fixed-Point) Iteration

Corrollary to the Convergence Result
If g satisfies the hypothesis of the Theorem, then

n

k
[P = Pl < 57— IP1 = Pol.

A

Proof of Corollary (1 of 3)
For n > 1, the procedure used in the proof of the theorem implies that

|Pr+1 — Pl = [9(Pn) — g(Pn-1)
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Functional (Fixed-Point) Iteration

Corrollary to the Convergence Result
If g satisfies the hypothesis of the Theorem, then

n

k
[P = Pl < 57— IP1 = Pol.

A

Proof of Corollary (1 of 3)
For n > 1, the procedure used in the proof of the theorem implies that

|Pny1 —Pnl = [9(Pn) — g(Pn-1)l
k|Pn — pn-1|
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Corrollary to the Convergence Result
If g satisfies the hypothesis of the Theorem, then

n

k
[P = Pl < 57— IP1 = Pol.

A

Proof of Corollary (1 of 3)
For n > 1, the procedure used in the proof of the theorem implies that

|Pny1 —Pnl = [9(Pn) — g(Pn-1)l
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Convergence Criteria

Functional (Fixed-Point) Iteration

[Pov1 = Pol < K" Py — pol J

Proof of Corollary (2 of 3)
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Convergence Criteria

Functional (Fixed-Point) Iteration

[Pov1 = Pol < K" Py — pol J

Proof of Corollary (2 of 3)
Thus, form>n>1,

|Pm — Pnl = |Pm — Pm—1 + Pm=1 — Pm—2 + - + Pnt1 — Pn|
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Convergence Criteria

Functional (Fixed-Point) Iteration

[Pov1 = Pol < K" Py — pol J

Proof of Corollary (2 of 3)
Thus, form>n>1,

|Pm = Pal = |Pm — Pm—1+ Pm—1 = Pm—2+ -+ Ppr1 — Pnl
lPm — Pm—1| + [Pm—1 — Pm—2| + - + |Pn11 — Pnl

IA
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Convergence Criteria

Functional (Fixed-Point) Iteration

[Pov1 = Pol < K" Py — pol J

Proof of Corollary (2 of 3)
Thus, form>n>1,

lpm —Pnl = |Pm — Pm—1+ Pm—1 — Pm—2+ -+ Pns1 — Pnl
< |Pm — Pm—1| + |Pm—1 — Pm—2| + -+ |Pnt1 — Pnl
< k™ V|py — po| + k™2 |py — po| + - - + k" [Py — ol
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Convergence Criteria

Functional (Fixed-Point) Iteration

[Pov1 = Pol < K" Py — pol J

Proof of Corollary (2 of 3)
Thus, form>n>1,

lpm —Pnl = |Pm — Pm—1+ Pm—1 — Pm—2+ -+ Pns1 — Pnl
< |Pm — Pm—1| + |Pm—1 — Pm—2| + -+ |Pnt1 — Pnl
< k™ V|py — po| + k™2 |py — po| + - - + k" [Py — ol

IN

K" (14 K+ K2+ k™) |py — pol.
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Convergence Criteria

Functional (Fixed-Point) Iteration

\pm—pnlgk”(1+k+k2+---+km*”*1>\p1—p0|. J

Proof of Corollary (3 of 3)
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Convergence Criteria

Functional (Fixed-Point) Iteration

\pm—pnlgk”(1+k+k2+---+km*”*1>\p1—p0|. J

Proof of Corollary (3 of 3)
However, since limy, .o, pm = p, we obtain

lp—pn| = n;[)noo |Pm — Pnl
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Convergence Criteria

Functional (Fixed-Point) Iteration

\pm—pnlgk”(1+k+k2+---+km*”*1>\p1—p0|. J

Proof of Corollary (3 of 3)
However, since limy, .o, pm = p, we obtain

lp—pn| = n;[)noo |Pm — Pnl

< K'|p1 —pol > K
i=1
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Convergence Criteria

Functional (Fixed-Point) Iteration

\pm—pnlgk”(1+k+k2+---+km*”*1>\p1—p0|. J

Proof of Corollary (3 of 3)
However, since limy, .o, pm = p, we obtain

lp—pn| = n;[)noo |Pm — Pnl

< K'|p1 —pol > K
=
K" I
= 7 P1—pol.
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Convergence Criteria

Functional (Fixed-Point) Iteration

Example: g(x) = g(x) =37*
Consider the iteration function g(x) = 3= over the interval [%, 1]

starting with py = % Determine a lower bound for the number of
iterations n required so that |p, — p| < 107°?
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Convergence Criteria

Functional (Fixed-Point) Iteration

Example: g(x) = g(x) =37*
Consider the iteration function g(x) = 3= over the interval [%, 1]

starting with py = % Determine a lower bound for the number of
iterations n required so that |p, — p| < 107°?

Determine the Parameters of the Problem
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Convergence Criteria

Functional (Fixed-Point) Iteration

Example: g(x) = g(x) =37*

Consider the iteration function g(x) = 3= over the interval [%, 1]

starting with py = % Determine a lower bound for the number of
iterations n required so that |p, — p| < 107°?

Determine the Parameters of the Problem

Note that p; = g(po) = 373 = 0.6933612 and, since g'(x) = -3 *In3,
we obtain the bound

Ig'(x)] < 373In3 < .7617362 ~ .762 = k.

Numerical Analysis (Chapter 2) Fixed-Point Iteration Il R L Burden & J D Faires 21/54



Convergence Criteria

Functional (Fixed-Point) Iteration

Use the Corollary
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Convergence Criteria

Functional (Fixed-Point) Iteration

Use the Corollary

Therefore, we have

n

k
Pn =Pl < T—IPo—pil
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Convergence Criteria

Functional (Fixed-Point) Iteration

Use the Corollary

Therefore, we have

kn
Pn =Pl < T—IPo—pil
762" |1
< 22 -
S 1”76 ‘3 6933612‘
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Convergence Criteria

Functional (Fixed-Point) Iteration

Use the Corollary
Therefore, we have

kn
Pn =Pl < T—IPo—pil
762" |1
< 22 -
S 1”76 ‘3 6933612‘

< 1.513 x 0.762"
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Convergence Criteria

Functional (Fixed-Point) Iteration

Use the Corollary

Therefore, we have
kﬂ
Pn =Pl < T—IPo—pil
762" |1
€ —— |==.
S 1”782 ‘3 6933612‘
< 1513 x0.762"
We require that
1.513 x 0.762" < 107° or n> 43.88
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Footnote on the Estimate Obtained

@ It is important to realise that the estimate for the number of
iterations required given by the theorem is an upper bound.

Numerical Analysis (Chapter 2) Fixed-Point Iteration Il R L Burden & J D Faires 23/54



Footnote on the Estimate Obtained

@ It is important to realise that the estimate for the number of
iterations required given by the theorem is an upper bound.

@ In the previous example, only 21 iterations are required in
practice, i.e. poy = 0.54781 is accurate to 10~5.
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Footnote on the Estimate Obtained

@ It is important to realise that the estimate for the number of
iterations required given by the theorem is an upper bound.

@ In the previous example, only 21 iterations are required in
practice, i.e. poy = 0.54781 is accurate to 10~5.

@ The reason, in this case, is that we used
g(1)=0.762

whereas
g'(0.54781) = 0.602
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Footnote on the Estimate Obtained

@ It is important to realise that the estimate for the number of
iterations required given by the theorem is an upper bound.

@ In the previous example, only 21 iterations are required in
practice, i.e. poy = 0.54781 is accurate to 10~5.

@ The reason, in this case, is that we used
g(1)=0.762
whereas
g'(0.54781) = 0.602

@ If one had used k = 0.602 (were it available) to compute the
bound, one would obtain N = 23 which is a more accurate
estimate.
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Sample Problem

Outline

© Ssample Problem: f(x) = x3 + 4x2 — 10 =0
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Sample Problem

A Single Nonlinear Equation

Example 2

We return to Example 1 and the equation
x3+4x2-10=0

which has a unique root in [1, 2]. Its value is approximately
1.365230013. )
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Sample Problem

f(x)=x3+4x2—-10=00n[1,2]

14
y=1f(x) = X%+ 4x% -10
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Sample Problem

Solving f(x) = x3 +4x2 —10 =0

Earlier, we listed 5 possible transpositions to x = g(x)

x=gi1(x) = x—x3—4x>+10
10
X=g(x) = 7—4x
X=g3(x) = %\/10—x3
10
Xx=a(x) = \z 5
x3 4+ 4x% -10
¥=00) = X" T ae ey
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Sample Problem

Solving f(x) = x3 +4x2 — 10

Results Observed for x = g(x) with xo = 1.5

x =gi(x) =x—x3—4x>+10 Does not Converge

X =go(X) = \/1)?7 Does not Converge

X =g3(x) = % V10 — x3 Converges after 31 lterations
10 ,
X =g4(x) = A Converges after 12 lterations
3 2 _
X=0g5(x)=x— W Converges after 5 Iterations
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Sample Problem

x =gi(x)=x—x%—4x* +10 Does not Converge

X =go(x) = \/1)?7 Does not Converge

X =g3(x) = % V10 — x3 Converges after 31 lterations
10 ,
X =g4(x) = A Converges after 12 lterations
3 2 _
X=0g5(x)=x— W Converges after 5 Iterations
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Sample Problem

Solving f(x) = x3 +4x2 — 10

X =01(x) =x—x3—4x> 110 J

Iteration for x = g;(x) Does Not Converge
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Sample Problem

Solving f(x) = x3 +4x2 — 10

X =01(x) =x—x3—4x> 110 J

Iteration for x = g;(x) Does Not Converge
Since

di(x) =1-3x2—8x g;(1) = —-10 9,(2) = —27

there is no interval [a, b] containing p for which | g} (x)| < 1.
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Sample Problem

Solving f(x) = x3 +4x2 — 10

X =01(x) =x—x3—4x> 110 J

Iteration for x = g;(x) Does Not Converge
Since
gi(x) =1—3x% —8x gi(1)=-10 gi(2) = —27

there is no interval [a, b] containing p for which |g}(x)| < 1. Also, note
that
91(1)=6 and 92(2) =12

so that g(x) ¢ [1,2] for x € [1,2].
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Sample Problem

lteration Function: x = g1(x) = x — x> — 4x2 + 10

Iterations starting with pp = 1.5

Pn—1 Pn | |Pn— Pn1l
1.5000000 | -0.8750000 | 2.3750000
-0.8750000 6.7324219 |  7.6074219
6.7324219 | -469.7200120 | 476.4524339

WM —=>

| ps ~ 1.03 x 10° |
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Sample Problem

g1 Does Not Map [1, 2] into [1, 2]

Y g(x) =2 — 23— 422+ 10

-10

v
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Sample Problem

91(x)| > 1 0on [1,2]

y
Y 2 X
1 1
U J
-10
gi(r) =1—32% — 8z
=27
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Sample Problem

1
X = go(X) =1 70 —4x Does not Converge
X =g3(x) = % V10 — x3 Converges after 31 lterations
10 ,
X =g4(x) = A Converges after 12 lterations
3 2 _
X=0g5(x)=x— W Converges after 5 Iterations
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Sample Problem

Iteration for x = g»(x) is Not Defined
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Sample Problem

Solving f(x) = x3 +4x2 — 10

/10
X =go(x) = 7—4x

Iteration for x = g»(x) is Not Defined

It is clear that g»(x) does not map [1,2] onto [1, 2] and the sequence
{Pn}pe is not defined for py = 1.5.
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Sample Problem

Solving f(x) = x3 +4x2 — 10

/10
X =go(x) = 7—4x

Iteration for x = g»(x) is Not Defined

It is clear that g»(x) does not map [1,2] onto [1, 2] and the sequence
{pn}peo is not defined for py = 1.5. Also, there is no interval containing
p such that

|g5(x)| < 1

since
g(1)~ —-2.86 g(p) ~ —3.43

and g’(x) is not defined for x > 1.58.
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lteration Function: x = go(x) =

Iterations starting with py = 1.5

Pn—1

Pn

|Pn — Pn-1|

W =S

1.5000000
0.8164966
2.9969088

0.8164966
2.9969088
v/ —8.6509

0.6835034
2.1804122

Sample Problem

Numerical Analysis (Chapter 2)
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Sample Problem

X =go(x) = \/1)?7 Does not Converge

X =g3(x) = % V10 — x3 Converges after 31 lterations
10 ,
X =g4(x) = A Converges after 12 lterations
3 2 _
X=0g5(x)=x— W Converges after 5 Iterations
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Sample Problem

Solving f(x) = x3 +4x2 — 10

N =

X = ga(x) =

V10— x® J

Iteration for x = gs(x) Converges (Slowly)
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Sample Problem

Solving f(x) = x3 +4x2 — 10

X = ga(x) =

V10— x® J

N =

Iteration for x = gs(x) Converges (Slowly)

By differentiation,
3x2
(X)) =———m——— <0 for xe[1,2
GB(X) =~ s [1.2

and so g=gj is strictly decreasing on [1, 2].
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Sample Problem

Solving f(x) = x3 +4x2 — 10

X = ga(x) =

V10— x® J

N =

Iteration for x = gs(x) Converges (Slowly)

By differentiation,
3x2
(X)) =———m——— <0 for xe[1,2
GB(X) =~ s [1.2

and so g=gj is strictly decreasing on [1,2]. However, gg(x)} > 1 for

x >1.71 and |g}(2)| ~ —2.12.
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Sample Problem

Solving f(x) = x3 +4x2 — 10

X = ga(x) =

V10 — x3 ’

N =

Iteration for x = gs(x) Converges (Slowly)

By differentiation,
3x2
(X)) =———m——— <0 for xe[1,2
GB(X) =~ s [1.2

and so g=gj is strictly decreasing on [1,2]. However, gg(x)} > 1 for
x > 1.71 and |g}(2)| ~ —2.12. A closer examination of {p,}7, will
show that it suffices to consider the interval [1,1.7] where |g4(x)| < 1
and g(x) € [1,1.7] for x € [1,1.7].
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lteration Function: x = gs(x) = 3v/10 — x3

Sample Problem

Iterations starting with pp = 1.5

Pn—1

Pn

|Pn — Pn—1|

OOk, WODN =S

1.500000000
1.286953768
1.402540804
1.345458374
1.375170253
1.360094193

1.286953768
1.402540804
1.345458374
1.375170253
1.360094193
1.367846968

0.213046232
0.115587036
0.057082430
0.029711879
0.015076060
0.007752775

1.365230013
1.365230014

1.365230014
1.365230013

0.000000001
0.000000000

Numerical Analysis (Chapter 2)
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Sample Problem

g3 Maps [1,1.7] into [1,1.7]

y g3(x) = LV — 23
2
1
X
! 2
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Sample Problem

|g4(x)| <1on[1,1.7]

Numerical Analysis (Chapter 2) Fixed-Point Iteration Il R L Burden & J D Faires 41/54




Sample Problem

Solving f(x) = x3 +4x2 — 10

x = g(x) with xo = 1.5

x=gi(x)=x—x>—4x24+10 Does not Converge

X =go(x) = \/1)?7 Does not Converge

X =g3(x) = % V10 — x3 Converges after 31 lterations
10 ,
X =g4(x) = 4 x Converges after 12 lterations
3 2 _
X=0g5(x)=x— W Converges after 5 Iterations
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Sample Problem

Solving f(x) = x3 +4x2 — 10

X =04(x) =

Iteration for x = g4(x) Converges (Moderately)
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Sample Problem

Solving f(x) = x3 +4x2 — 10

10
X = ga(X) = ’

4+ x

Iteration for x = g4(x) Converges (Moderately)

By differentiation,
10
/ e — —
%) ==\ 725 x5 <°
and it is easy to show that
0.10 < |g4(x)| < 0.15 Vxel,2]
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Sample Problem

Solving f(x) = x3 +4x2 — 10

10
X = ga(X) = ’

4+ x

Iteration for x = g4(x) Converges (Moderately)

By differentiation,
10
/ e — —
%) ==\ 725 x5 <°
and it is easy to show that
0.10 < |g4(x)| < 0.15 Vxel,2]

The bound on the magnitude of |g}(x)| is much smaller than that for
\gé(x)} and this explains the reason for the much faster convergence.
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lteration Function: x = ga(x) = 4/ %

Sample Problem

Iterations starting with pp = 1.5

Pn—1

Pn

|Pn — Pn—1|

OOk, WODN =S

1.500000000
1.348399725
1.367376372
1.364957015
1.365264748
1.365225594

1.348399725
1.367376372
1.364957015
1.365264748
1.365225594
1.365230576

0.151600275
0.018976647
0.002419357
0.000307733
0.000039154
0.000004982

1.365230014
1.365230013

1.365230013
1.365230013

0.000000000
0.000000000

Numerical Analysis (Chapter 2)

Fixed-Point Iteration Il

R L Burden & J D Faires

44 /54



Sample Problem

g4 Maps [1,2] into [1, 2]

y
_ 10
94(2) = \/ 145
2 el 2
e
1 s
1 ’ 1
4 1
| S
7 1
:\/N
1 s
1,7 !
1 v oo
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Sample Problem

y
/ _ 10

94(r) - T\ 4(4Fx)®
1 rTTTTT T A
1 1
1 1
1 1
1 1
1 1
1 1
[} l

|1 |2 X
—
1 1
1 1
1 1
1 1
1 1
1 1
1 1
-1 Lo J

v
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Sample Problem

X =go(x) = \/1)?7 Does not Converge

X =g3(x) = % V10 — x3 Converges after 31 lterations
10 ,
X =g4(x) = A Converges after 12 lterations
& 4 2 1
X =0g5(x)=x— )(;;2):_8)(0 Converges after 5 Iterations
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Sample Problem

Solving f(x) = x3 +4x2 — 10

x3 +4x% 10

X=050) =X = "5 e e

Iteration for x = gs(x) Converges (Rapidly)
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Sample Problem

Solving f(x) = x3 +4x2 —10 =0

x3 +4x% 10

X =050 =X~ g

Iteration for x = gs(x) Converges (Rapidly)
For the iteration function gs(x), we obtain:

gs(x) = x - ff‘(f()) = g(x)

_ () Ly
BT = gs(p) =0
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Sample Problem

Solving f(x) = x3 +4x2 — 10

_x3+4x2—1o

X = g5(x) = 3x2 + 8x

Iteration for x = gs(x) Converges (Rapidly)
For the iteration function gs(x), we obtain:

_ ., f9 F(x)"(x)
gS(X) =X f’(X) :>QS(X) [f’(X)]

It is straightforward to show that 0 < \gg(x)} <0.28 Vxe[1,2]and
the order of convergence is quadratic since gs(p) = 0.

= gs5(p) =0
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lteration Function: x = gs(x) = x —

Iterations starting with py = 1.5

x3+4x>-10
3x2+8x

Pn—1

Pn

|Pn — Pn—1]

O~ ON =S

1.500000000
1.373333333
1.365262015
1.365230014
1.365230013

1.373333333
1.365262015
1.365230014
1.365230013
1.365230013

0.126666667
0.008071318
0.000032001
0.000000001
0.000000000

Sample Problem

Numerical Analysis (Chapter 2)
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Sample Problem

gs Maps [1,2] into [1, 2]

y
_ 23 +42%-10
g5(T) - 312 +8x
2 I_________/’l
1 s
1 ’ 1
1 ’ !
1 t !
\A/_/‘
1 > !
I s I
[ !
p
1 [
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Sample Problem

|95(x)| <1 0n [1,2]

y
94+42%-10) (6248
gh(w) =
1 F------=- 1
1 1
1 1
1 1
: 1
1 1
I / X
1 2
1 1
) 1
| |
1 1
_1 L - J
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Questions?



Reference Material



Mean Value Theorem

If f € Cla, b] and f is differentiable on (a, b), then a number c exists

such that
f(b) — f(a)

fle) = b—a

Parallel lines

Slope f'(c)
y=r

f) — fla@)
b—a
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