Solutions of Equations in One Variable

Fixed-Point Iteration II

Numerical Analysis (9th Edition) R L Burden & J D Faires

Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

Functional (Fixed-Point) Iteration

Functional (Fixed-Point) Iteration

Convergence Criteria for the Fixed-Point Method

- Functional (Fixed-Point) Iteration
- Convergence Criteria for the Fixed-Point Method
- 3 Sample Problem: $f(x) = x^3 + 4x^2 10 = 0$

Functional (Fixed-Point) Iteration

- Convergence Criteria for the Fixed-Point Method
- 3 Sample Problem: $f(x) = x^3 + 4x^2 10 = 0$

Functional (Fixed-Point) Iteration

Now that we have established a condition for which g(x) has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration.

Functional (Fixed-Point) Iteration

Now that we have established a condition for which g(x) has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration.

Basic Approach

• To approximate the fixed point of a function g, we choose an initial approximation p_0 and generate the sequence $\{p_n\}_{n=0}^{\infty}$ by letting $p_n = g(p_{n-1})$, for each $n \ge 1$.

Functional (Fixed-Point) Iteration

Now that we have established a condition for which g(x) has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration.

Basic Approach

- To approximate the fixed point of a function g, we choose an initial approximation p_0 and generate the sequence $\{p_n\}_{n=0}^{\infty}$ by letting $p_n = g(p_{n-1})$, for each $n \ge 1$.
- If the sequence converges to *p* and *g* is continuous, then

$$p=\lim_{n o\infty}p_n=\lim_{n o\infty}g(p_{n-1})=g\left(\lim_{n o\infty}p_{n-1}
ight)=g(p),$$

and a solution to x = g(x) is obtained.

Functional (Fixed-Point) Iteration

Now that we have established a condition for which g(x) has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration.

Basic Approach

- To approximate the fixed point of a function g, we choose an initial approximation p_0 and generate the sequence $\{p_n\}_{n=0}^{\infty}$ by letting $p_n = g(p_{n-1})$, for each $n \ge 1$.
- If the sequence converges to p and g is continuous, then

$$p=\lim_{n o\infty}p_n=\lim_{n o\infty}g(p_{n-1})=g\left(\lim_{n o\infty}p_{n-1}
ight)=g(p),$$

and a solution to x = g(x) is obtained.

• This technique is called fixed-point, or functional iteration.

Functional (Fixed-Point) Iteration

Fixed-Point Algorithm

Fixed-Point Algorithm

```
1. n = 1;
```

Fixed-Point Algorithm

- 1. n = 1;
- 2. $p_n = g(p_{n-1});$

Fixed-Point Algorithm

- 1. n = 1;
- 2. $p_n = g(p_{n-1});$
- 3. If $|p_n p_{n-1}| < \epsilon$ then 5;

Fixed-Point Algorithm

- 1. n = 1;
- 2. $p_n = g(p_{n-1});$
- 3. If $|p_n p_{n-1}| < \epsilon$ then 5;
- **4**. $n \to n + 1$; go to 2.

Fixed-Point Algorithm

- 1. n = 1;
- 2. $p_n = g(p_{n-1});$
- 3. If $|p_n p_{n-1}| < \epsilon$ then 5;
- **4.** $n \to n + 1$; go to 2.
- 5. End of Procedure.

A Single Nonlinear Equation

Example 1

The equation

$$x^3 + 4x^2 - 10 = 0$$

has a unique root in [1,2]. Its value is approximately 1.365230013.

$$f(x) = x^3 + 4x^2 - 10 = 0$$
 on [1, 2]

$$f(x) = x^3 + 4x^2 - 10 = 0$$
 on [1, 2]

$$f(x) = x^3 + 4x^2 - 10 = 0$$
 on [1, 2]

• There are many ways to change the equation to the fixed-point form x = g(x) using simple algebraic manipulation.

$$f(x) = x^3 + 4x^2 - 10 = 0$$
 on [1, 2]

- There are many ways to change the equation to the fixed-point form x = g(x) using simple algebraic manipulation.
- For example, to obtain the function g described in part (c), we can manipulate the equation $x^3 + 4x^2 10 = 0$ as follows:

$$4x^2 = 10 - x^3$$
, so $x^2 = \frac{1}{4}(10 - x^3)$, and $x = \pm \frac{1}{2}(10 - x^3)^{1/2}$.

$$f(x) = x^3 + 4x^2 - 10 = 0$$
 on [1, 2]

form x = g(x) using simple algebraic manipulation.

• For example, to obtain the function g described in part (c), we can

There are many ways to change the equation to the fixed-point

• For example, to obtain the function g described in part (c), we can manipulate the equation $x^3 + 4x^2 - 10 = 0$ as follows:

$$4x^2 = 10 - x^3$$
, so $x^2 = \frac{1}{4}(10 - x^3)$, and $x = \pm \frac{1}{2}(10 - x^3)^{1/2}$.

• We will consider 5 such rearrangements and, later in this section, provide a brief analysis as to why some do and some not converge to p = 1.365230013.

Solving $f(x) = x^3 + 4x^2 - 10 = 0$

5 Possible Transpositions to x = g(x)

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$

$$x = g_2(x) = \sqrt{\frac{10}{x} - 4x}$$

$$x = g_3(x) = \frac{1}{2}\sqrt{10 - x^3}$$

$$x = g_4(x) = \sqrt{\frac{10}{4 + x}}$$

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Numerical Results for $f(x) = x^3 + 4x^2 - 10 = 0$

n	<i>g</i> ₁	<i>9</i> 2	<i>9</i> 3	<i>9</i> 4	<i>9</i> 5
0	1.5	1.5	1.5	1.5	1.5
1	-0.875	0.8165	1.286953768	1.348399725	1.373333333
2	6.732	2.9969	1.402540804	1.367376372	1.365262015
3	-469.7	$(-8.65)^{1/2}$	1.345458374	1.364957015	1.365230014
4	$1.03 imes 10^8$,	1.375170253	1.365264748	1.365230013
5			1.360094193	1.365225594	
10			1.365410062	1.365230014	
15			1.365223680	1.365230013	
20			1.365230236		
25			1.365230006		
30			1.365230013		

Solving $f(x) = x^3 + 4x^2 - 10 = 0$

$$x = g(x)$$
 with $x_0 = 1.5$

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 Does not Converge

$$x=g_2(x)=\sqrt{\frac{10}{x}}-4x$$

Does not Converge

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

Converges after 31 Iterations

$$x=g_4(x)=\sqrt{\frac{10}{4+x}}$$

Converges after 12 Iterations

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Converges after 5 Iterations

- Functional (Fixed-Point) Iteration
- Convergence Criteria for the Fixed-Point Method
- 3 Sample Problem: $f(x) = x^3 + 4x^2 10 = 0$

Functional (Fixed-Point) Iteration

A Crucial Question

 How can we find a fixed-point problem that produces a sequence that reliably and rapidly converges to a solution to a given root-finding problem?

A Crucial Question

- How can we find a fixed-point problem that produces a sequence that reliably and rapidly converges to a solution to a given root-finding problem?
- The following theorem and its corollary give us some clues concerning the paths we should pursue and, perhaps more importantly, some we should reject.

Convergence Result

Let $g \in C[a,b]$ with $g(x) \in [a,b]$ for all $x \in [a,b]$. Let g'(x) exist on (a,b) with

$$|g'(x)| \le k < 1, \quad \forall x \in [a, b].$$

Functional (Fixed-Point) Iteration

Convergence Result

Let $g \in C[a, b]$ with $g(x) \in [a, b]$ for all $x \in [a, b]$. Let g'(x) exist on (a, b) with

$$|g'(x)| \le k < 1, \quad \forall x \in [a, b].$$

If p_0 is any point in [a, b] then the sequence defined by

$$p_n = g(p_{n-1}), \qquad n \geq 1,$$

will converge to the unique fixed point p in [a, b].

Proof of the Convergence Result

• By the Uniquenes Theorem, a unique fixed point exists in [a, b].

- By the Uniquenes Theorem, a unique fixed point exists in [a, b].
- Since g maps [a, b] into itself, the sequence $\{p_n\}_{n=0}^{\infty}$ is defined for all $n \ge 0$ and $p_n \in [a, b]$ for all n.

- By the Uniquenes Theorem, a unique fixed point exists in [a, b].
- Since g maps [a, b] into itself, the sequence $\{p_n\}_{n=0}^{\infty}$ is defined for all $n \ge 0$ and $p_n \in [a, b]$ for all n.
- Using the Mean Value Theorem $\underbrace{\quad\quad}$ and the assumption that $|g'(x)| \le k < 1, \forall x \in [a, b]$, we write

$$|p_n - p| = |g(p_{n-1}) - g(p)|$$

- By the Uniquenes Theorem, a unique fixed point exists in [a, b].
- Since g maps [a, b] into itself, the sequence $\{p_n\}_{n=0}^{\infty}$ is defined for all $n \ge 0$ and $p_n \in [a, b]$ for all n.
- Using the Mean Value Theorem $\underbrace{\text{MVI}}$ and the assumption that $|g'(x)| \le k < 1$, $\forall x \in [a, b]$, we write

$$|p_n - p| = |g(p_{n-1}) - g(p)|$$

 $\leq |g'(\xi)| |p_{n-1} - p|$

Proof of the Convergence Result

- By the Uniquenes Theorem, a unique fixed point exists in [a, b].
- Since g maps [a, b] into itself, the sequence $\{p_n\}_{n=0}^{\infty}$ is defined for all $n \ge 0$ and $p_n \in [a, b]$ for all n.

$$|p_n - p| = |g(p_{n-1}) - g(p)|$$

$$\leq |g'(\xi)| |p_{n-1} - p|$$

$$\leq k |p_{n-1} - p|$$

where $\xi \in (a, b)$.

Proof of the Convergence Result (Cont'd)

Proof of the Convergence Result (Cont'd)

$$|p_n-p| \leq k|p_{n-1}-p|$$

Proof of the Convergence Result (Cont'd)

$$|p_n - p| \leq k |p_{n-1} - p|$$

$$\leq k^2 |p_{n-2} - p|$$

Proof of the Convergence Result (Cont'd)

$$|p_n - p| \leq k |p_{n-1} - p|$$

$$\leq k^2 |p_{n-2} - p|$$

$$\leq k^n |p_0 - p|$$

Proof of the Convergence Result (Cont'd)

Applying the inequality of the hypothesis inductively gives

$$|p_n - p| \leq k |p_{n-1} - p|$$

$$\leq k^2 |p_{n-2} - p|$$

$$\leq k^n |p_0 - p|$$

Since k < 1,

$$\lim_{n\to\infty}|p_n-p|\leq\lim_{n\to\infty}k^n\,|p_0-p|=0,$$

and $\{p_n\}_{n=0}^{\infty}$ converges to p.

Corrollary to the Convergence Result

If g satisfies the hypothesis of the Theorem, then

$$|p_n-p| \leq \frac{k^n}{1-k}|p_1-p_0|.$$

Functional (Fixed-Point) Iteration

Corrollary to the Convergence Result

If g satisfies the hypothesis of the Theorem, then

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|.$$

Proof of Corollary (1 of 3)

$$|p_{n+1}-p_n| = |g(p_n)-g(p_{n-1})|$$

Functional (Fixed-Point) Iteration

Corrollary to the Convergence Result

If g satisfies the hypothesis of the Theorem, then

$$|p_n-p| \leq \frac{k^n}{1-k}|p_1-p_0|.$$

Proof of Corollary (1 of 3)

$$|p_{n+1} - p_n| = |g(p_n) - g(p_{n-1})|$$

 $< k|p_n - p_{n-1}|$

Functional (Fixed-Point) Iteration

Corrollary to the Convergence Result

If g satisfies the hypothesis of the Theorem, then

$$|p_n-p| \leq \frac{k^n}{1-k}|p_1-p_0|.$$

Proof of Corollary (1 of 3)

$$|p_{n+1} - p_n| = |g(p_n) - g(p_{n-1})|$$

 $\leq k |p_n - p_{n-1}|$
 $\leq \cdots$

Functional (Fixed-Point) Iteration

Corrollary to the Convergence Result

If g satisfies the hypothesis of the Theorem, then

$$|p_n-p| \leq \frac{k^n}{1-k}|p_1-p_0|.$$

Proof of Corollary (1 of 3)

$$|p_{n+1} - p_n| = |g(p_n) - g(p_{n-1})|$$

 $\leq k |p_n - p_{n-1}|$
 $\leq \cdots$
 $< k^n |p_1 - p_0|$

$$|p_{n+1}-p_n| \le k^n |p_1-p_0|$$

Proof of Corollary (2 of 3)

$$|p_{n+1}-p_n| \le k^n |p_1-p_0|$$

Proof of Corollary (2 of 3)

$$|p_m - p_n| = |p_m - p_{m-1} + p_{m-1} - p_{m-2} + \cdots + p_{n+1} - p_n|$$

$$|p_{n+1}-p_n| \le k^n |p_1-p_0|$$

Proof of Corollary (2 of 3)

$$|p_m - p_n| = |p_m - p_{m-1} + p_{m-1} - p_{m-2} + \dots + p_{n+1} - p_n|$$

 $\leq |p_m - p_{m-1}| + |p_{m-1} - p_{m-2}| + \dots + |p_{n+1} - p_n|$

$$|p_{n+1}-p_n| \leq k^n |p_1-p_0|$$

Proof of Corollary (2 of 3)

$$|p_{m}-p_{n}| = |p_{m}-p_{m-1}+p_{m-1}-p_{m-2}+\cdots+p_{n+1}-p_{n}|$$

$$\leq |p_{m}-p_{m-1}|+|p_{m-1}-p_{m-2}|+\cdots+|p_{n+1}-p_{n}|$$

$$\leq k^{m-1}|p_{1}-p_{0}|+k^{m-2}|p_{1}-p_{0}|+\cdots+k^{n}|p_{1}-p_{0}|$$

Functional (Fixed-Point) Iteration

$$|p_{n+1}-p_n| \le k^n |p_1-p_0|$$

Proof of Corollary (2 of 3)

$$\begin{aligned} |p_{m}-p_{n}| &= |p_{m}-p_{m-1}+p_{m-1}-p_{m-2}+\cdots+p_{n+1}-p_{n}| \\ &\leq |p_{m}-p_{m-1}|+|p_{m-1}-p_{m-2}|+\cdots+|p_{n+1}-p_{n}| \\ &\leq k^{m-1}|p_{1}-p_{0}|+k^{m-2}|p_{1}-p_{0}|+\cdots+k^{n}|p_{1}-p_{0}| \\ &\leq k^{n}\left(1+k+k^{2}+\cdots+k^{m-n-1}\right)|p_{1}-p_{0}|. \end{aligned}$$

$$|p_m-p_n| \leq \kappa^n \left(1+k+k^2+\cdots+k^{m-n-1}\right) |p_1-p_0|\,.$$

Proof of Corollary (3 of 3)

$$|p_m-p_n| \leq k^n \left(1+k+k^2+\cdots+k^{m-n-1}\right) |p_1-p_0|\,.$$

Proof of Corollary (3 of 3)

However, since $\lim_{m\to\infty} p_m = p$, we obtain

$$|p-p_n| = \lim_{m\to\infty} |p_m-p_n|$$

$$|p_m-p_n| \leq k^n \left(1+k+k^2+\cdots+k^{m-n-1}\right) |p_1-p_0|.$$

Proof of Corollary (3 of 3)

However, since $\lim_{m\to\infty} p_m = p$, we obtain

$$|p-p_n| = \lim_{m\to\infty} |p_m-p_n|$$

 $\leq \kappa^n |p_1-p_0| \sum_{i=1}^{\infty} \kappa^i$

Functional (Fixed-Point) Iteration

$$|p_m-p_n| \leq k^n \left(1+k+k^2+\cdots+k^{m-n-1}\right) |p_1-p_0|.$$

Proof of Corollary (3 of 3)

However, since $\lim_{m\to\infty} p_m = p$, we obtain

$$|p - p_n| = \lim_{m \to \infty} |p_m - p_n|$$

$$\leq k^n |p_1 - p_0| \sum_{i=1}^{\infty} k^i$$

$$= \frac{k^n}{1 - k} |p_1 - p_0|.$$

Example: $g(x) = g(x) = 3^{-x}$

Consider the iteration function $g(x) = 3^{-x}$ over the interval $\left[\frac{1}{3}, 1\right]$ starting with $p_0 = \frac{1}{3}$. Determine a lower bound for the number of iterations n required so that $|p_n - p| < 10^{-5}$?

Example: $g(x) = g(x) = 3^{-x}$

Consider the iteration function $g(x) = 3^{-x}$ over the interval $\left[\frac{1}{3}, 1\right]$ starting with $p_0 = \frac{1}{3}$. Determine a lower bound for the number of iterations n required so that $|p_n - p| < 10^{-5}$?

Determine the Parameters of the Problem

Example: $g(x) = g(x) = 3^{-x}$

Consider the iteration function $g(x) = 3^{-x}$ over the interval $[\frac{1}{3}, 1]$ starting with $p_0 = \frac{1}{3}$. Determine a lower bound for the number of iterations n required so that $|p_n - p| < 10^{-5}$?

Determine the Parameters of the Problem

Note that $p_1 = g(p_0) = 3^{-\frac{1}{3}} = 0.6933612$ and, since $g'(x) = -3^{-x} \ln 3$, we obtain the bound

$$|g'(x)| \le 3^{-\frac{1}{3}} \ln 3 \le .7617362 \approx .762 = k.$$

Use the Corollary

Use the Corollary

Therefore, we have

$$|p_n - p| \le \frac{k^n}{1 - k} |p_0 - p_1|$$

Use the Corollary

Therefore, we have

$$|p_n - p| \le \frac{k^n}{1 - k} |p_0 - p_1|$$
 $\le \frac{.762^n}{1 - .762} \left| \frac{1}{3} - .6933612 \right|$

Use the Corollary

Therefore, we have

$$|p_n - p| \leq \frac{k^n}{1 - k} |p_0 - p_1|$$

$$\leq \frac{.762^n}{1 - .762} \left| \frac{1}{3} - .6933612 \right|$$

$$\leq 1.513 \times 0.762^n$$

Use the Corollary

Therefore, we have

$$|p_n - p| \leq \frac{k^n}{1 - k} |p_0 - p_1|$$

$$\leq \frac{.762^n}{1 - .762} \left| \frac{1}{3} - .6933612 \right|$$

$$\leq 1.513 \times 0.762^n$$

We require that

$$1.513 \times 0.762^n < 10^{-5}$$
 or

4 D > 4 D > 4 B > 4 B > B = 900

n > 43.88

 It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound.

- It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound.
- In the previous example, only 21 iterations are required in practice, i.e. $p_{21} = 0.54781$ is accurate to 10^{-5} .

- It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound.
- In the previous example, only 21 iterations are required in practice, i.e. $p_{21} = 0.54781$ is accurate to 10^{-5} .
- The reason, in this case, is that we used

$$g'(1) = 0.762$$

whereas

$$g'(0.54781) = 0.602$$

- It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound.
- In the previous example, only 21 iterations are required in practice, i.e. $p_{21} = 0.54781$ is accurate to 10^{-5} .
- The reason, in this case, is that we used

$$g'(1) = 0.762$$

whereas

$$g'(0.54781) = 0.602$$

• If one had used k = 0.602 (were it available) to compute the bound, one would obtain N = 23 which is a more accurate estimate.

Outline

- Functional (Fixed-Point) Iteration
- Convergence Criteria for the Fixed-Point Method
- 3 Sample Problem: $f(x) = x^3 + 4x^2 10 = 0$

A Single Nonlinear Equation

Example 2

We return to Example 1 and the equation

$$x^3 + 4x^2 - 10 = 0$$

which has a unique root in [1,2]. Its value is approximately 1.365230013.

$$f(x) = x^3 + 4x^2 - 10 = 0$$
 on [1, 2]

Earlier, we listed 5 possible transpositions to x = g(x)

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$

$$x = g_2(x) = \sqrt{\frac{10}{x} - 4x}$$

$$x = g_3(x) = \frac{1}{2}\sqrt{10 - x^3}$$

$$x = g_4(x) = \sqrt{\frac{10}{4 + x}}$$

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Results Observed for x = g(x) with $x_0 = 1.5$

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 Does not Converge

$$x=g_2(x)=\sqrt{\frac{10}{x}}-4x$$

Does not Converge

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

Converges after 31 Iterations

$$x=g_4(x)=\sqrt{\frac{10}{4+x}}$$

Converges after 12 Iterations

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Converges after 5 Iterations

$$x = g(x)$$
 with $x_0 = 1.5$

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 Does not Converge

$$x=g_2(x)=\sqrt{\frac{10}{x}}-4x$$

Does not Converge

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

Converges after 31 Iterations

$$x=g_4(x)=\sqrt{\frac{10}{4+x}}$$

Converges after 12 Iterations

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Converges after 5 Iterations

Solving
$$f(x) = x^3 + 4x^2 - 10 = 0$$

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$

Iteration for $x = g_1(x)$ Does Not Converge

Solving
$$f(x) = x^3 + 4x^2 - 10 = 0$$

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$

Iteration for $x = g_1(x)$ Does Not Converge

Since

$$g_1'(x) = 1 - 3x^2 - 8x$$

$$g_1'(1) = -10$$

$$g_1'(2) = -27$$

there is no interval [a, b] containing p for which $|g'_1(x)| < 1$.

Solving
$$f(x) = x^3 + 4x^2 - 10 = 0$$

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$

Iteration for $x = g_1(x)$ Does Not Converge

Since

$$g_1'(x) = 1 - 3x^2 - 8x$$

$$g_1'(1) = -10$$

$$g_1'(2) = -27$$

there is no interval [a,b] containing p for which $|g_1'(x)| < 1$. Also, note that

$$g_1(1) = 6$$

and

$$g_2(2) = -12$$

so that $g(x) \notin [1, 2]$ for $x \in [1, 2]$.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < (で)

Iteration Function: $x = g_1(x) = x - x^3 - 4x^2 + 10$

Iterations starting with $p_0 = 1.5$

	n	p_{n-1}	p _n	$ p_{n}-p_{n-1} $
ĺ	1	1.5000000	-0.8750000	2.3750000
İ	2	-0.8750000	6.7324219	7.6074219
	3	6.7324219	-469.7200120	476.4524339

$$p_4 \approx 1.03 \times 10^8$$

g_1 Does Not Map [1,2] into [1,2]

$\overline{|g_1'(x)|} > 1 \text{ on } [1, 2]$

$$x = g(x)$$
 with $x_0 = 1.5$

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 Does not Converge

$$x=g_2(x)=\sqrt{\frac{10}{x}}-4x$$

Does not Converge

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

Converges after 31 Iterations

$$x=g_4(x)=\sqrt{\frac{10}{4+x}}$$

Converges after 12 Iterations

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Converges after 5 Iterations

Solving
$$f(x) = x^3 + 4x^2 - 10 = 0$$

$$x=g_2(x)=\sqrt{\frac{10}{x}}-4x$$

Iteration for $x = g_2(x)$ is Not Defined

Solving
$$f(x) = x^3 + 4x^2 - 10 = 0$$

$$x=g_2(x)=\sqrt{\frac{10}{x}}-4x$$

Iteration for $x = g_2(x)$ is Not Defined

It is clear that $g_2(x)$ does not map [1,2] onto [1,2] and the sequence $\{p_n\}_{n=0}^{\infty}$ is not defined for $p_0 = 1.5$.

$$x=g_2(x)=\sqrt{\frac{10}{x}-4x}$$

Iteration for $x = g_2(x)$ is Not Defined

It is clear that $g_2(x)$ does not map [1,2] onto [1,2] and the sequence $\{p_n\}_{n=0}^{\infty}$ is not defined for $p_0=1.5$. Also, there is no interval containing p such that

$$\left|g_2'(x)\right|<1$$

since

$$q'(1) \approx -2.86$$

$$g'(p) \approx -3.43$$

and g'(x) is not defined for x > 1.58.

Iteration Function:
$$x = g_2(x) = \sqrt{\frac{10}{x} - 4x}$$

Iterations starting with $p_0 = 1.5$

n	p_{n-1}	p_n	$ p_n - p_{n-1} $
1	1.5000000	0.8164966	0.6835034
2	0.8164966	2.9969088	2.1804122
3	2.9969088	$\sqrt{-8.6509}$	

$$x = g(x)$$
 with $x_0 = 1.5$

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 Does not Converge

$$x=g_2(x)=\sqrt{\frac{10}{x}}-4x$$

Does not Converge

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

Converges after 31 Iterations

$$x=g_4(x)=\sqrt{\frac{10}{4+x}}$$

Converges after 12 Iterations

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Converges after 5 Iterations

Solving
$$f(x) = x^3 + 4x^2 - 10 = 0$$

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

Solving
$$f(x) = x^3 + 4x^2 - 10 = 0$$

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

By differentiation,

$$g_3'(x) = -\frac{3x^2}{4\sqrt{10-x^3}} < 0$$

for $x \in [1, 2]$

and so $g=g_3$ is strictly decreasing on [1,2].

Solving
$$f(x) = x^3 + 4x^2 - 10 = 0$$

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

By differentiation,

$$g_3'(x) = -\frac{3x^2}{4\sqrt{10-x^3}} < 0$$
 for $x \in [1,2]$

and so $g=g_3$ is strictly decreasing on [1,2]. However, $|g_3'(x)|>1$ for x>1.71 and $|g_3'(2)|\approx -2.12$.

Solving
$$f(x) = x^3 + 4x^2 - 10 = 0$$

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

By differentiation,

$$g_3'(x) = -\frac{3x^2}{4\sqrt{10-x^3}} < 0$$
 for $x \in [1,2]$

and so $g=g_3$ is strictly decreasing on [1,2]. However, $|g_3'(x)| > 1$ for x > 1.71 and $|g_3'(2)| \approx -2.12$. A closer examination of $\{p_n\}_{n=0}^{\infty}$ will show that it suffices to consider the interval [1,1.7] where $|g_3'(x)| < 1$ and $g(x) \in [1,1.7]$ for $x \in [1,1.7]$.

Iteration Function: $x = g_3(x) = \frac{1}{2}\sqrt{10 - x^3}$

Iterations starting with $p_0 = 1.5$

n	p_{n-1}	p_n	$ p_{n}-p_{n-1} $
1	1.500000000	1.286953768	0.213046232
2	1.286953768	1.402540804	0.115587036
3	1.402540804	1.345458374	0.057082430
4	1.345458374	1.375170253	0.029711879
5	1.375170253	1.360094193	0.015076060
6	1.360094193	1.367846968	0.007752775

30	1.365230013	1.365230014	0.00000001
31	1.365230014	1.365230013	0.000000000

g₃ Maps [1, 1.7] into [1, 1.7]

40 / 54

$$|g_3'(x)| < 1 \text{ on } [1, 1.7]$$

$$x = g(x)$$
 with $x_0 = 1.5$

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 Does not Converge

$$x=g_2(x)=\sqrt{\frac{10}{x}}-4x$$

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

Converges after 31 Iterations

$$x = g_4(x) = \sqrt{\frac{10}{4+x}}$$

Converges after 12 Iterations

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Converges after 5 Iterations

4 D > 4 A P > 4 A P > A

Solving
$$f(x) = x^3 + 4x^2 - 10 = 0$$

$$x=g_4(x)=\sqrt{\frac{10}{4+x}}$$

Iteration for $x = g_4(x)$ Converges (Moderately)

$$x=g_4(x)=\sqrt{\frac{10}{4+x}}$$

Iteration for $x = g_4(x)$ Converges (Moderately)

By differentiation,

$$g_4'(x) = -\sqrt{\frac{10}{4(4+x)^3}} < 0$$

and it is easy to show that

$$0.10 < |g_4'(x)| < 0.15$$

$$\forall x \in [1,2]$$

$$x=g_4(x)=\sqrt{\frac{10}{4+x}}$$

Iteration for $x = g_4(x)$ Converges (Moderately)

By differentiation,

$$g_4'(x) = -\sqrt{\frac{10}{4(4+x)^3}} < 0$$

and it is easy to show that

$$0.10 < |g_4'(x)| < 0.15$$
 $\forall x \in [1, 2]$

The bound on the magnitude of $|g'_4(x)|$ is much smaller than that for $|g'_3(x)|$ and this explains the reason for the much faster convergence.

Iteration Function:
$$x = g_4(x) = \sqrt{\frac{10}{4+x}}$$

Iterations starting with $p_0 = 1.5$

n	p_{n-1}	p_n	$ p_{n}-p_{n-1} $
1	1.500000000	1.348399725	0.151600275
2	1.348399725	1.367376372	0.018976647
3	1.367376372	1.364957015	0.002419357
4	1.364957015	1.365264748	0.000307733
5	1.365264748	1.365225594	0.000039154
6	1.365225594	1.365230576	0.000004982

11	1.365230014	1.365230013	0.000000000
12	1.365230013	1.365230013	0.000000000

g_4 Maps [1,2] into [1,2]

$|g_4'(x)| < 1 \text{ on } [1,2]$

4□ > 4ⓓ > 4른 > 4분 > 분 ♥)Q()

$$x = g(x)$$
 with $x_0 = 1.5$

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 Does not Converge

$$x=g_2(x)=\sqrt{\frac{10}{x}}-4x$$

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

Converges after 31 Iterations

$$x=g_4(x)=\sqrt{\frac{10}{4+x}}$$

Converges after 12 Iterations

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Converges after 5 Iterations

Solving
$$f(x) = x^3 + 4x^2 - 10 = 0$$

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Iteration for $x = g_5(x)$ Converges (Rapidly)

Solving
$$f(x) = x^3 + 4x^2 - 10 = 0$$

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Iteration for $x = g_5(x)$ Converges (Rapidly)

For the iteration function $g_5(x)$, we obtain:

$$g_5(x) = x - \frac{f(x)}{f'(x)} \Rightarrow g'_5(x) = \frac{f(x)f''(x)}{[f'(x)]^2} \Rightarrow g'_5(p) = 0$$

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Iteration for $x = g_5(x)$ Converges (Rapidly)

For the iteration function $g_5(x)$, we obtain:

$$g_5(x) = x - \frac{f(x)}{f'(x)} \Rightarrow g'_5(x) = \frac{f(x)f''(x)}{[f'(x)]^2} \Rightarrow g'_5(p) = 0$$

It is straightforward to show that $0 \le |g_5'(x)| < 0.28 \ \forall \ x \in [1,2]$ and the order of convergence is quadratic since $g_5'(p) = 0$.

Iteration Function:
$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Iterations starting with $p_0 = 1.5$

n	p_{n-1}	p _n	$ p_n-p_{n-1} $
1	1.500000000	1.373333333	0.126666667
2	1.373333333	1.365262015	0.008071318
3	1.365262015	1.365230014	0.000032001
4	1.365230014	1.365230013	0.000000001
5	1.365230013	1.365230013	0.000000000

*g*₅ Maps [1, 2] into [1, 2]

$$|g_5'(x)| < 1$$
 on [1, 2]

Questions?

Reference Material

Mean Value Theorem

If $f \in C[a, b]$ and f is differentiable on (a, b), then a number c exists such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Return to Fixed-Point Convergence Theorem

