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28. Show that max |g(x)| = h%/4, where g(x) = (x — jh)(x — (j + 1)h).

XjEXSX 4|

29. The Bernstein polynomial of degree n for f € C[0, 1] 1s given by
B =) (1) (5 )xta—om
n yyars ‘-k n 1

where (2) denotes n!/k!(n — k)!. These polynomials can be used in a constructive proof of
the Weierstrass Approximation Theorem 3.1 (see [Bart]) since him B,(x) = f(x), for each
i de el

x € [0, 1].
a. Find B;(x) for the functions
. fx)=x i fx)=1

b. Show that for each ¥ < n,

n—1\ [k (n
k—-1/ \n/\k)
¢. Use part (b) and the fact, from (ii) in part (a), that

n

1 = Z (:)x"(l —x)"*  foreach n,

k=0

to show that, for f(x) = x?,

n—1 1
Bn(x):( " )x2+-n—x.

d. Use part (c) to estimate the value of n necessary for [B,, (x) — x2| < 107° to hold for all
x in [0, 1].

3.2 Divided Differences

Iterated interpolation was used in the previous section to generate successively higher-
degree polynomial approximations at a specific point. Divided-difference methods intro-
duced in this section are used to successively generate the polynomials themselves. Our
treatment of divided-difference methods will be brief since the results in this section will
not be used extensively in subsequent material. Most older texts on numerical analysis have
extensive treatments of divided-difference methods. If a more comprehensive treatment is
needed, the book by Hildebrand [Hild] is a particularly good reference.

Suppose that P,(x) is the nth Lagrange polynomial that agrees with the function
f at the distinct numbers xq, x{, ..., x,. The divided differences of f with respect to
Xp, X1, - .. , Xp are used to express P, (x) in the form

P,(x) =ap+aj(x —xp) +ax(x — x0)(x —x1) + -~
F an(x = x0)(x = 31) -+ (6 = o), (3.5)

for appropriate constants ag, a;, ... , ay.



3.2 Divided Differences 123

To determine the first of these constants, gg, note that if P,(x) is written in the form
of Eq. (3.5), then evaluating P, (x) at x leaves only the constant term ay; that is,

ap = P,(x0) = f(xp).

Similarly, when P(x) is evaluated at x;, the only nonzero terms in the evaluation of
P, (x,) are the constant and linear terms,

f(x0) +ai(x; — x0) = Pr(x1) = f(x1);

SO

_ fxp) — f(xo)_ (3.6)

X1 — X0

a)

We now introduce the divided-difference notation, which is related to Aitken’s A? notation
used in Section 2.5. The zeroth divided difference of the function f with respect to x;,

denoted f{x;], is simply the value of f at x;:
flxil = f(x:). (3.7)

The remaining divided differences are defined inductively; the first divided difference of
f with respect to x; and x; 4 is denoted f[x;, x;4+] and is defined as

flxied] — flad (3.8)

Xigl — X;

flxi, xip1]l =

The second divided difference, f{x;, x;,1, x; 2], is defined as

flxivr, xig2] — flxi, xig1]

Sxis xig1, Xz42] =

Xi42 — Xi
Similarly, after the (k — 1)st divided differences,
flxisxizn, Xig2, oo s Xigk—1]  and  fIxigp, Xiq2, - oo 0 Xigk—15 Xik s
have been determined, the kth divided difference relative to x;, x; 11, Xig2, - .. , Xiqk IS
given by
FIxiv1, Xigo, o oo Xl — f[xi, Xigls«or s Xitk—1)
f[xfaxi+1! !xf+k—19xl'+k] = .
Xitk — X

(3.9)

With this notation, Eq. (3.6) can be reexpressed as a; = f[xp, x1], and the interpolating
polynomial in Eq. (3.5) is

P,(x) = flxol + flxo, x1J(x — x0) + a2(x — x0)(x — x1)
+ ot an(x = xo)(x — xp) - (X = Xn1).

As might be expected from the evaluation of gy and ay, the required constants are

Ay = f[xov X1y X254+ 9xk]s
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foreachk =0, 1, ... ,n.So P,(x) can be rewritten as (see [Hild, pp. 43-47])
n
P.(x) = flxol+ Y _ flxo, %1, .., %](x — x0) - (x — xey). (3.10)
k=1
The value of f[xg, x1, ..., xx) is independent of the order of the numbers xg, x;, ... , xg,

as is shown in Exercise 17. This equation is known as Newton’s interpolatory divided-
difference formula. The generation of the divided differences is outlined in Table 3.7. Two
fourth and one fifth difference could also be determined from these data.

Table 3.7
First Second Third
x f{x) divided differences divided differences divided differences
xo f[xo] |
flxo, x1]1 = flal = flx]
X] — Xg
x1 flx] flxo, x1, x2] = flxi, x;] - ){[xo, x1]
2 — Xp
flx, x2] = flal = fla] flxo, x1, X2, x3] = fhxr, x2, 53] — flxo, x1, %2]
Xy — X . s — %o
x2 flx2] flxy, x2, x3l = f[x2'x;3 — X o
f[xz, x3] = f[x3] - f[xZ] f[xl,xz,x;,, xa] = f[x;g, X3, Xq4| — f[xl, Xy, Xaf
X3 — X2 X4 — X
x3 flxa) Flxa, s, = LR i[xz’ %3]
. —
f[x3; X4] — f[x4] - f[x3] | f[xz, X3, X4, xs] — f[X3, X4, x5] — f[st X3, x4]
X4 — X3 Xs — Xy
X4 f[X4] f[ij, X4, X5] = f[X4, X5] - f[x3, X4]
[x5] — flx4] s T
flxq, xs] = /
X5 - X4
xs flxs]

Newton’s interpolatory divided-difference formula can be implemented using Algo-
rithm 3.2. The form of the output can be modified to produce all the divided differences,

as done in Example 1.

ALGORITHM Newton’s Interpolatory Divided-Difference Formula

3.2 To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n +
1) distinct numbers xg, X1, . .. , X, for the function f:

INPUT numbers xg, x1, ... , x,; values f(xg), f(x1), ..., f(x,) as Foo0, F1.0, ..., Fao-
OUTPUT the numbers Fyq, F11, ..., F,, where

n i—1
Px)=) Fu ] —x)).
i=0 J=0
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Table 3.8

Theorem 3.6
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Step1 Fori=1,2,...,n
Forj=12,...,i
Fijo1 = Fio -

X —"—x,‘_j

Step2 OUTPUT (Fogo, Fi,1, ..., Fon)y (Fiiis flxo, x1, ..., x:].)
STOP. |

set F; j =

In Example 3 of Section 3.1, various interpolating polynomials were used to approximate
f(1.5), using the data in the first three columns of Table 3.8. The remaining entries of

Table 3.8 contain divided differences computed using Algorithm 3.2.
The coefficients of the Newton forward divided-difference form of the interpolatory

polynomial are along the diagonal in the table. The polynomial is

P4(x) = 0.7651977 — 0.4837057(x — 1.0) — 0.1087339(x — 1.0)(x — 1.3)
+ 0.0658784(x — 1.0)(x — 1.3)(x — 1.6)
+ 0.0018251(x — 1.0)(x — 1.3)(x — 1.6)(x — 1.9).

Notice that the value P4(1.5) = 0.5118200 agrees with the result in Section 3.1,
Example 3, as it must because the polynomials are the same. L

i Xi Fxi] Sixioy, xi] Slxica, iy, ] flxis, oo x]l flxcs, oo xid
0 1.0 0.7651977

—0.4837057
l 1.3 0.6200860 —0.1087339
—0.5489460 0.0658784
2 1.6 0.4554022 —0.0494433 0.0018251
—0.5786120 0.0680685
3 19 0.2818186 0.0118183
—0.5715210

4 22 0.1103623

The Mean Value Theorem applied to Eq. (3.8) wheni = 0,

Flxo. x1] = flx) — f(xo),

X1 — Xo

implies that when f’ exists, flxg, x1] = f’'(£) for some number & between x; and x;. The
following theorem generalizes this result.

Suppose that f € C"[a, b] and xg, xy, ... , X, are distinct numbers in [a, b]. Then a num-
ber £ exists in (a, b) with
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Proof Let
g(x) = f(x) — Py(x).

Since f(x;) = P,(x;), foreachi = 0,1, ..., n, the function g has n + 1 distinct zeros
in [a, b]. The Generalized Rolle’s Theorem implies that a number £ in (a, b) exists with
g™ (€)= 0,50

0= f"E) - P ).
Since P,(x) is a polynomial of degree n whose leading coefficient i1s f[xg, x1, ... , x,],
P (x) = n! flxo, X1, ... . Xnl,

for all values of x. As a consequence,

f(")(&').

n!

f[xﬂs-xls--' »xn]=

Newton’s interpolatory divided-difference formula can be expressed in a simplified
form when xg, x;, ... , x, are arranged consecutively with equal spacing. In this case, we
introduce the notation 2z = x;,; — x;, foreachi = 0,1,... ,n — 1 and let x = xo + sh.
Then the difference x — x; can be written as x — x; = (s — i)k. So Eq. (3.10) becomes

Py(x) = Py(xo + sh) = flxol + shf[xo, x;]1 + s(s — 1)h* f[xo, x1, X;]
+ "'+S(S - l)(S —n+ l)hnf[x()sxls s ,xn]

=Zs(s— 1)---(s —k+ DA flxo, x1, ..., xi].
k=0 .

Using binomial-coefficient notation,

(s)_s(s—l)---(s—k+1)

k k!

we can express P, (x) compactly as
"\ (s
Py(x) = Py(xg + sh) = flxol + Z (k)k!hkf[xo, Xiy oo s Xl (3.11)
k=1

This formula is called the Newton forward divided-difference formula. Another
form, called the Newton forward-difference formula, is constructed by making use of
the forward difference notation A introduced in Aitken’s A? method. With this notation,

— 1
flxo, x1]1 = f (o) — J(xo) - ;;Af(xo)

X1 — XD

A [AfG) —Af(xo) | _ 1 5
T [ 7 ]-— 75z 877 (x0),

f[xO! X1, x2] =
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and, in general,

]
flxo. x1, ..., x] = Wﬁkf(xo)-

Then, Eq. (3.11) has the following formula.

Newton Forward-Difference Formula

(s
Pa(x) = flxo] + ) ( )Akf(xo) (3.12)
k=1 k
If the interpolating nodes are reordered as x,, x,—i,...,Xg, a formula similar to

Eq. (3.10) results:
Po(x) = fIxal + flxn, xn11(x — x0) + flXn, Xno1, Xn-2](x — X2)(x = x,-1)
+ o Sl x0) (0 = Xp) (X — X)) - (0 — X)),
If the nodes are equally spaced with x = x, +sh and x = x; + (s + n — i)h, then
P,(x) = P,(x, + sh)
= flxn] + $hf Dxn, Xnct] + (5 + DA £ [xn, Xnp, Xn2] - -
+s(s+1)---(s+n—DA" flxu, ..., x0l

This form is called the Newton backward divided-difference formula. It is used
to derive a more commonly applied formula known as the Newton backward-difference
formula. To discuss this formula, we need the following definition.

Given the sequence {p,}.-,, define the backward difference V p, (read nabla p,) by
Vpy = pn — pn-1, forn>1.
Higher powers are defined recursively by

VEp, = V(V*ip,), fork > 2. 0

Definition 3.7 implies that

1 1
Slxn, X1l = =V (xn),  flxn, xp-1, x02] = _'—zvzf(xn),
h 2h
and, in general,
i
Sy Xty ooy Xni] = vaf(xn).

Consequently,

s(s+1)---’(s+n—~1)vn
n!

f(xn).

Vi) +- -+

P.(x) = f[x,,]-}—sz(xn)-!-S(S;_ D
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EXAMPLE 2

Table 3.9
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If we extend the binomial coefficient notation to include all real values of s by letting

¥

—5 —s(=s—=—1D--(=s—k+1 (SEFD (s +HEk—-1)
B k! =D k!

then
—F ) —5

Pp(x) = f[xn]+(—1)l( 1 )Vf(xn)+(—1)2( ) )sz(xn)+' - -+(-—1)"( , )V"f(xn),

which gives the following result.

Newton Backward-Difference Formula

P,(x) = flxa] + Z(—l)"(f)ka(xn) (3.13)
k=1

The divided-difference Table 3.9 corresponds to the data in Example 1.

First Second Third Fourth
divided divided divided - divided
differences differences differences differences
1.0 0.7651977
—0.4837057
1.3 0.6200860 —0.1087339
—0.5489460 0.0658784
1.6 0.4554022 —0.0494433 0.0018251
—0.5786120 0.0680685 T
1.9 0.2818186 00118183 77
—0.5715210
2.2 0.1103623

Only one interpolating polynomial of degree at most 4 uses these five data points, but
we will organize the data points to obtain the best interpolation approximations of degrees
1, 2, and 3. This will give us a sense of accuracy of the fourth-degree approximation for

the given value of x.
If an approximation to f(1.1) is required, the reasonable choice for the nodes would be

xo=1.0,x; = 1.3, x, = 1.6, x3 = 1.9, and x4 = 2.2 since this choice makes the earliest
possible use of the data points closest to x = 1.1, and also makes use of the fourth divided
difference. This implies that h = 0.3 and s = %, so the Newton forward divided-difference
formula is used with the divided differences that have a solid underscore in Table 3.9:

Py(1.1) = P4(1.0+ ::—(0.3))

1 1 2
= 0.7651997 + 5(0.3) (—0.4837057) + 3 (— §) (0.3)*(—0.1087339)
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+l (-—3) (—-5) (0.3)%(0.0658784)

3\ 3 3
1/ 2\/ 5\/ 8 .
+3 (_3) (_5) (—3) (0.3)*(0.0018251)
= 0.7196480.

To approximate a value when x is close to the end of the tabulated values, say, x = 2.0,
we would again like to make the earliest use of the data points closest to x. This requires
using the Newton backward divided-difference formula with s = —% and the divided
differences in Table 3.9 that have a dashed underscore:

Py(2.0) = P4 (2.2 — %(0.3))

= 0.1103623 — 32-(0.3)@-—0.5715210) — % (%) (0.3)2(0.0118183)
~2(3) (%) 03y 2N (Y (1) 03y
3 (3) (3) (0.3)*(0.0680685) — (3) (3) (3) (0.3)*(0.0018251)
= 0.2238754. i

The Newton formulas are not appropriate for approximating f (x) when x lies near the
center of the table since employing either the backward or forward method in such a way
that the highest-order difference is involved will not allow x to be close to x. A number of
divided-difference formulas are available for this case, each of which has situations when
it can be used to maximum advantage. These methods are known as centered-difference
formulas. There are a number of such methods, but we will present only one, Stirling’s
method, and again refer the interested reader to [Hild] for a more complete presentation.

For the centered-difference formulas, we choose xy near the point being approxi-
mated and label the nodes directly below xy as xj, x3,... and those directly above as
X_1,X_72,.... With this convention, Stirling’s formula is given by

h
Py(x) = Pymy1(x) = flxol + %(f[x_l, xol + flxo, x11) + s2h* flx_1, x0,x1]  (3.14)

s(s? — DA?
T
ot DE2 =) (5P = (= DR X s K]
N 5(52 _ 1) .. (;2 — m2)h2m+1

ifn =2m+1isodd. If n = 2m is even, we use the same formula but delete the last line.
The entries used for this formula are underlined in Table 3.10 on page 130.

flx-2, x_1, xo0, x11 + flx=1, X0, X1, X2])

(f[-x——m-—-ls N A f[x—ma exm—l-l])s

Consider the table of data that was given in the previous examples. To use Stirling’s formula
to approximate f(1.5) with xo = 1.6, we use the underlined entries in the difference Table

3.11.
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Table 3.10 First Second Third Fourth
divided divided divided divided
X fix) differences differences differences differences
x2  flx]
f[xHZs x—l]
X_ Flx_1] flx_2, x_1, x0]
Sflx-1, xol flx_2, x_1, X0, X1]
Xo Sxol Sflx-1, xo, x\] flx—a, x_1, X0, X1, X2]
S [x0, %1l flx-1, X0, X1, X2]
X1 Sixi] Sflxo, x1, x2]
Sflx1, x2]
X2 f[xa]
Table 3.11 First Second Third Fourth
divided divided divided divided
X f(x) differences differences differences differences
1.0 0.7651977
—0.4837057
1.3 0.6200860 —0.1087339
—0.5489460 0.0658784
1.6 0.4554022 —0.0494433 0.0018251
—0.5786120 0.0680685
1.9 0.2818186 0.0118183 '
-0.5715210
2.2 0.1103623
The formula, with h = 0.3, xo = 1.6, and s = — 1, becomes

F1.5) ~ P, (1.6+ (—%) (0.3))

1 .
= 0.4554022 + (— §) (%-3-) ((—0.5489460) + (—0.5786120))

2
+ (—%) (0.3)*(—0.0494433)

2
-+ %— (—%—) ((——%—) - 1) (0.3)°(0.0658784 + 0.0680685)

1\? 1)\2 ‘ -
+(_§) (-5) ~ 1} (0.3)4(0.0018251)

= (0.5118200. =
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— e e "
EXERCISE SET 3.2

1.

Use Newton’s interpolatory divided-difference formula or Algorithm 3.2 to construct inter-

polating polynomtals of degree one, two, and three for the following data. Approximate the

specified value using each of the polynomials.

a. f(8.4)if f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(R.7) =
18.82091

b. f(0.9) if f(0.6) = —0.17694460, f(0.7) = 0.01375227, f(0.8) = 0.22363362,
f(1.0) = 0.65809197

Use Newton’s forward-difference formula to construct interpolating polynomials of degree

one, two, and three for the following data. Approximate the specified value using each of the

polynomials.

a. f(—3)if f(—0.75) = -0.07181250, f(—0.5) = -0.02475000, f(-025) =
0.33493750, f(0) = 1.10100000

b. f(0.25) if f(0.1) = —0.62049958, f(0.2) = —0.28398668, f(0.3) = 0.00660095,
f(0.4) = 0.24842440

Use Newton's backward-difference formula to construct interpolating polynomials of degree

one, two, and three for the following data. Approximate the specified value using each of the

polynomials.

a. f (—% if f(—-0.75) = -0.07181250, f(-0.5) = -—-0.02475000, f(—0.25) =
0.33493750, f(0) = 1.10100000

b. f(0.25) if f(0.1) = —0.62049958, f(0.2) = -—0.28398668, f(0.3) = 0.00660095,
f(0.4) = 0.24842440

a. Use Algorithm 3.2 to construct the interpolating polynomial of degree four for the un-
equally spaced points given in the following table:

x f(x)
0.0 | —6.00000
0.1 | —5.89483
0.3 | —5.65014
0.6 | —5.17788
1.0 | —4.28172

b. Add f(1.1) = —3.99583 to the table, and construct the interpolating polynomial of
degree five.
a. Approximate f(0.05) using the following data and the Newton forward divided-
difference formula:
x |00 | 02 | 0.4 | 0.6 | 0.8

£(x) | 1.00000 | 1.22140 | 1.49182 | 1.82212 | 2.22554

b. Use the Newton backward divided-difference formula to approximate f(0.65).
c. Use Stirling’s formula to approximate f(0.43).
Show that the polynomial interpolating the following data has degree 3.
x | =2]-1] 0] 1] 2] 3
feoo| 1] a11]16]13] -a




132 CHAPTER 3 « Interpolation and Polynomial Approximation

7. a. Show that the Newton forward divided-difference polynomials
Px)=3-2x+D+0(x+1)x)+ (x+ DHx)(x —1)
and
Qx)=—-1+4(x+2) -3(x +2)(x + 1) + (x + 2)(x + 1)(x)

both interpolate the data
x |—2|-—1|0| 1|2
Fo | =1 3]|1]-1]3
b. Why does part (a) not violate the uniqueness property of interpolating polynomiais?
8. A fourth-degree polynomial P(x) satisfies A*P(0) = 24, A3P(0) = 6, and A?P(0) = 0,

where AP(x) = P(x + 1) — P(x). Compute A2P(10).
9. The following data are given for a polynomial P(x) of unknown degree.

x {0‘ 1,2
Px) 2|-114

Determine the coefficient of x2 in P(x) if all third-order forward differences are 1.
10. The following data are given for a polynomial P (x) of unknown degree.

x |0|1| 2' 3
Py [4]9]15 18

Determine the coefficient of x* in P(x) if all fourth-order forward differences are 1.

11. The Newton forward divided-difference formula is used to approximate f(0.3) given the fol-
lowing data.

x | 00| 02| 04] 06
f&x) | 150 | 21.0 | 30.0 | 51.0

Suppose it is discovered that f(0.4) was understated by 10 and f(0.6) was overstated by 5.
By what amount should the approximation to f(0.3) be changed?

12. Forafunction f, the Newton’s interpolatory divided-difference formula gives the interpolating
polynomial

16
Pi(x) =1+4+4x +4x(x — 0.25) + ?x(x —0.25)(x — 0.5),

on the nodes xo = 0, x; = 0.25, x, = 0.5 and x3 = 0.75. Find f(0.75).
13. For a function f, the forward divided differences are given by

x9 = 0.0 flxol
Sxo, x1]

x =04 Slxl flxo, x1, x2] = 2
Slx1, x2] =10

Xy = 0.7 f[xg] =6

Determine the missing entries in the table.



