Numerical Solutions of Nonlinear
Systems of Equations

Introduction

The amount of pressure required to sink a large heavy object into soft, homogeneous soil
lying above a hard base soil can be predicted by the amount of pressure required to sink
smaller objects in the same soil. Specifically, the amount of pressure p to sink a circular
plate of radius r a distance d in the soft soil, where the hard base soil lies a distance D > d
below the surface, can be approximated by an equation of the form

p=kie? +kar,

where kj, k>, and k3 are constants depending on d and the consistency of the soil, but not
on the radius of the plate.

There are three unknown constants in this equation, so three small plates with differing
radii are sunk to the same distance. This will determine the minimal size plate required
to sustain a large load. The loads required for this sinkage are recorded, as shown in the
accompanying figure.

This produces the three nonlinear equations

my = ki + ks,
ny = klekzrz + ksrs,

my = k1€ + kg,
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Numerical Solutions of Nonlinear Systems of Equations

in the three unknowns k1, k;, and k3. Numerical approximation methods are usually needed
for solving systems of equations when the equations are nonlinear. Exercise 12 of Section
10.2 concerns an application of the type described here.

Solving a system of nonlinear equations is a problem that is avoided when possible,
customarily by approximating the nonlinear system by a system of linear equations. When
this is unsatisfactory, the problem must be tackled directly. The most straightforward ap-
proach is to adapt the methods from Chapter 2, which approximate the solutions of a single
nonlinear equation in one variable, to apply when the single-variable problem is replaced
by a vector problem that incorporates all the variables.

The principal tool in Chapter 2 was Newton’s method, a technique that is generally
quadratically convergent. This is the first technique we modify to solve systems of nonlinear
equations. Newton’s method, as modified for systems of equations, is quite costly to apply,
and in Section 10.3 we describe how a modified Secant method can be used to obtain
approximations more easily, although with a loss of the extremely rapid convergence that
Newton’s method can produce.

Section 10.4 describes the method of Steepest Descent. Itis only linearly convergent, but
it does not require the accurate starting approximations needed for more rapidly converging
techniques. It is often used to find a good initial approximation for Newton’s method or one
of its modifications.

In Section 10.5, we give an introduction to continuation methods, which use a parameter
to move from a problem with an easily determined solution to the solution of the original
nonlinear problem.

Many of the proofs of the theoretical results in this chapter are omitted because they
involve methods that are usually studied in advanced calculus. A good general reference
for this material is Ortega’s book entitled Numerical Analysis—A Second Course [Or2]. A
more complete reference is [OR].

10.1

Fixed Points for Functions of Several Variables

A system of nonlinear equations has the form
fl(-xl7-x27 L. 7xn) - 0’

Hrxxa,.00,x,) =0,
(10.1)

fn(-xler?‘ . '7-xn) = 0’

where each function f; can be thought of as mapping a vector X = (x1,xy,...,x,)" of the
n-dimensional space R” into the real line R. A geometric representation of a nonlinear
system when n = 2 is given in Figure 10.1.

This system of n nonlinear equations in n unknowns can also be represented by defining
a function F mapping R” into R" as

F(xi,xo, ... x) = (1L X0, 0 %0), (XL X0 X0) s fu(n, X2, oox)
If vector notation is used to represent the variables xy, x5, . . ., x;,, then system (10.1) assumes
the form
Fx) =0. (10.2)
The functions fi, f>, ..., f, are called the coordinate functions of F.
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Figure 10.1

Example 1

10.1  Fixed Points for Functions of Several Variables

631

z :fz(xl» xz)

z :fl(xl» xz)

Silx, xp) =0 ‘and S2x1, x7)

=0

X1

Place the 3 x 3 nonlinear system

1
3X1 — COS()CZX3) — < = 0,

x? —81(x2 + 0.1)* + sinx3 + 1.06 = 0,
107 —3
I R

e 12 4+ 20x;3 + 3

in the form (10.2).

Solution Define the three coordinate functions fi, f>, and f3 from R3 to R as

1
Si(x1,x2,x3) = 3x1 — cos(xx3) — =,

fr(x1,x2,x3) = x7 — 81(x + 0.1)% + sin x3 + 1.06,

10 — 3

f3(x1,x2,x3) = €712 + 20x3 + T

Then define F from R? — R? by

F(x) = F(x1,x2,x3)

= (f1(x1,%2,%3), fo(xX1,X2,%3), f3(x1,%2,%3))"

1
= <3x1 — cos(xpx3) — E,x% —81(x; +0.1)°

. _ 107 — 3\’
+sinxz + 1.06, e1*2 4 20x3 + — )

Before discussing the solution of a system given in the form (10.1) or (10.2), we

need some results concerning continuity and differentiability of functions from R” into R”.
Although this study could be presented directly (see Exercise 12), we use an alternative
method that permits us to present the more theoretically difficult concepts of limits and

continuity in terms of functions from R” into R.
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Definition 10.1

Definition 10.2

Continuous definitions for
functions of n variables follow
from those for a single variable
by replacing, where necessary,
absolute values by norms.

Definition 10.3

Numerical Solutions of Nonlinear Systems of Equations

Let f be a function defined on a set D C R” and mapping into R. The function f is said to
have the limit L at x, written

lim f(x) =L,

X—X0
if, given any number ¢ > 0, a number § > 0 exists with

lf(x) =Ll <e,
whenever x € D and

0 < ||x —xp|| <. [

The existence of a limit is also independent of the particular vector norm being used,
as discussed in Section 7.1. Any convenient norm can be used to satisfy the condition in
this definition. The specific value of § will depend on the norm chosen, but the existence of
a § is independent of the norm.

The notion of a limit permits us to define continuity for functions from R” into R.
Although various norms can be used, continuity is independent of the particular choice.

Let f be a function from a set D C R” into R. The function f is continuous atxy € D
provided limy_, x, f(x) exists and

xliggo Fx) = f(Xo).

Moreover, f is continuous on a set D if f is continuous at every point of D. This concept
is expressed by writing f € C(D). [ |

We can now define the limit and continuity concepts for functions from R" into R" by
considering the coordinate functions from R” into R.

Let F be a function from D C R” into R” of the form

F(X) = (fl(x)’ fZ(X)’ SR fn(x))r’
where f; is a mapping from R” into R for each i. We define

lim F(x) = L = (L, L, ...,L,)",

X—X(

if and only if limy_.x, fi(x) = L;, foreachi =1,2,...,n. ]

The function F is continuous at xocD provided limy_,, F(x) exists and
limy .y, F(x) = F(xp). In addition, F is continuous on the set D if F is continuous at each
x in D. This concept is expressed by writing F € C(D).

For functions from R into R, continuity can often be shown by demonstrating that the
function is differentiable (see Theorem 1.6). Although this theorem generalizes to functions
of several variables, the derivative (or total derivative) of a function of several variables is
quite involved and will not be presented here. Instead we state the following theorem, which
relates the continuity of a function of n variables at a point to the partial derivatives of the
function at the point.
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10.1 Fixed Points for Functions of Several Variables 633

Theorem 104 Let f be a function from D C R" into R and x¢ € D. Suppose that all the partial derivatives
of f exist and constants § > 0 and K > 0 exist so that whenever ||x — Xy|| < § and x € D,
we have

a
’f(x) <K, foreachj=1,2,...,n.

3.Xj

Then f is continuous at X. [ ]

Fixed Points in R”

In Chapter 2, an iterative process for solving an equation f(x) = 0 was developed by first
transforming the equation into the fixed-point form x = g(x). A similar procedure will be
investigated for functions from R” into R”.

Definition 10.5 A function G from D C R” into R” has a fixed point at p € D if G(p) = p. [ |

The following theorem extends the Fixed-Point Theorem 2.4 on page 62 to the
n-dimensional case. This theorem is a special case of the Contraction Mapping Theorem,
and its proof can be found in [Or2], p. 153.

Theorem 10.6 LetD = {(x1,%,...,%,)" | ai < x; < b;,foreachi = 1,2,...,n} for some collection of
constants ay, day, . . . ,a, and by, by, . . ., b,. Suppose G is a continuous function from D C R”
into R” with the property that G(x) € D whenever x € D. Then G has a fixed point in D.
Moreover, suppose that all the component functions of G have continuous partial deriva-
tives and a constant K < 1 exists with
0gi(x) < K

—, Wwheneverx € D,
0x; n

foreachj = 1,2,...,nandeach component function g;. Then the sequence {x*}?° , defined
by an arbitrarily selected x¥ in D and generated by

x® = G(X(k_l)), foreachk > 1

converges to the unique fixed point p € D and

k
Ix —pl, = o IO = xV. (103

0= 1

Example 2 Place the nonlinear system

1
3x; — cos(xx3) — = =0,

2

x? —81(xy + 0.1)* 4 sinx3 + 1.06 = 0,
10m — 3

e—x[Xz + 20x3 + T[T — ()

in a fixed-point form x = G(x) by solving the ith equation for x;, show that there is a unique
solution on

D={(x1,x,x3) | -1<x;<1, foreachi=1,2,3}.

and iterate starting with x® = (0.1,0.1, —0.1)" until accuracy within 1073 in the I, norm
is obtained.
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Solution Solving the ith equation for x; gives the fixed-point problem

1 1
X = 5 cos(xox3) + —,

6
1
Xy = 5\/xf + sinx3 + 1.06 — 0.1, (10.4)
1 10mr — 3
X3 =——e "2 - ——
20 60

Let G : R?* — R3 be defined by G(x) = (g1(x), g2(x), g3(x))’, where

1
g1(x1,x2,x3) = 3 cos(xx3) + 5

L/ :
g2(x1,%2,x3) = 5\/x1 + sinxz + 1.06 — 0.1,

( ) I  10m =3
X1,X2,X3) = ——e - .
83(X1, X2, X3 20 60

Theorems 10.4 and 10.6 will be used to show that G has a unique fixed point in
D ={(x1,x,x3) | =1 <x; <1, foreachi=1,2,3}.

For x = (x1,x,x3)" in D,

1 1
lg1(x1,x2,x3)| < §|c08(x2x3)| + € < 0.50,

1 1
lg2(x1, %2, x3)| = ‘5\/xf + sinx; + 1.06 — 0.1] < 5\/1 +sinl+ 1.06 — 0.1 < 0.09,

and

o S I (e DL I (. SO
X1,X2,X%3)| = —e — < —e+ — < 061.
£0L 02BN =5, 60 20 60

So we have, foreachi = 1,2, 3,
—1 < gi(x1,x2,x3) < 1.

Thus G(x) € D whenever x € D.
Finding bounds for the partial derivatives on D gives

9 ? ?
28 _o, |22 20, and |28|=n0,

0x1 dxn 0x3
as well as

9 1 1 3 1 1

9811 < xg] - [sindoxs| < = sinl <0281, |28 < Z x| [sinxoxs| < = sin 1 < 0.281,
3)62 3 3 8x3 3 3

98| _ bl 1 0238

00l g [x2 £sinxs+1.06 V0218

o [cos ] < <0.119

0G| 18 /a2 4sinxs + 1.06  18V0218

0g3 |x2| _ - 1 0g3 x| 1

_— = — X2 <« 014, d o0 - 7 XX 014
on| 200 T20°° M| T 20 T T 20T
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10.1 Fixed Points for Functions of Several Variables 635

The partial derivatives of g1, g, and g3 are all bounded on D, so Theorem 10.4 implies
that these functions are continuous on D. Consequently, G is continuous on D. Moreover,
for every x € D,

‘8&(?‘)

Xj

<0.281, foreachi=1,2,3 and j=1,2,3,

and the condition in the second part of Theorem 10.6 holds with K = 3(0.281) = 0.843.

In the same manner it can also be shown that dg;/dx; is continuous on D for each
i=1,2,3andj = 1,2,3. (This is considered in Exercise 3.) Consequently, G has a unique
fixed point in D, and the nonlinear system has a solution in D.

Note that G having a unique fixed point in D does not imply that the solution to the
original system is unique on this domain, because the solution for x, in (10.4) involved
the choice of the principal square root. Exercise 7(d) examines the situation that occurs if
the negative square root is instead chosen in this step.

To approximate the fixed point p, we choose x¥ = (0.1,0.1, —0.1)". The sequence of
vectors generated by

1 1
(k) (k—1) _(k—=1)
.Xl = —3 COS x2 x3 + —6,

1 2
A = 5\/ (xgk-”) +sinaf ™" 4+ 1.06 — 0.1,

k 1 _ & &1 10w —3
x; P T P
20 60

converges to the unique solution of the system in (10.4). The results in Table 10.1 were
generated until

[x® = x*=D|_ <1075, o
Table 10.1 k xik) x;k) xgk) Hx(k) —_ k=D Hm

0 0.10000000 0.10000000 —0.10000000
1 0.49998333 0.00944115 —0.52310127 0.423
2 0.49999593 0.00002557 —0.52336331 9.4 x 1073
3 0.50000000 0.00001234 —0.52359814 23 x 1074
4 0.50000000 0.00000003 —0.52359847 1.2 x 1073
5 0.50000000 0.00000002 —0.52359877 3.1 x 1077

We could use the error bound (10.3) with K = 0.843 in the previous example. This
gives

(0.843)°

o _ -
I =Pl = 70843

(0.423) < 1.15,
which does not indicate the true accuracy of x®. The actual solution is

t
p= (0.5,0,—%) ~ (0.5,0, —0.5235987757)", so x® —plla <2 x 1075
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Table 10.2

Numerical Solutions of Nonlinear Systems of Equations

Accelerating Convergence

One way to accelerate convergence of the fixed-point iteration is to use the latest estimates
xik), - ,xi(f)l instead of xik_l), cox D e compute xi(k), as in the Gauss-Seidel method
for linear systems. The component equations for the problem in the example then become

s X
1 _ _ 1
xik) = 3 cos (xék l)xgk U) + E’

1 2 _
xg‘) = 5\/(xik)) + sinxgk b +1.06 — 0.1,

w_ 1 _ww 107 —3
T 60

With x©@ = (0.1,0.1, —0.1), the results of these calculations are listed in Table 10.2.

P =
0 0.10000000 0.10000000 —0.10000000

1 0.49998333 0.02222979 —0.52304613 0.423

2 0.49997747 0.00002815 —0.52359807 2.2 x 1072

3 0.50000000 0.00000004 —0.52359877 2.8 x107°

4 0.50000000 0.00000000 —0.52359877 3.8 x 1078

The iterate x® is accurate to within 10~ in the /, norm; so the convergence was indeed
accelerated for this problem by using the Gauss-Seidel method. However, this method does
not always accelerate the convergence.

Maple provides the function fsolve to solve systems of equations. The fixed-point
problem of Example 2 can be solved with the following commands:

gli=xl=1cos(rx3) + 11 g2:=x2=§y/(x))? +sin(x;) + 1.06 — 0.1 :
g3 = x3 = _2_loe—x1-x2 _ 107610—3 .

fsolve({gl, g2,83}, {x1,x2,x3}, {x1 = —1..1, x2 = —1..1, x3 = —1..1});

The first three commands define the system, and the last command invokes the procedure
fsolve. Maple displays the answer as

{x1 = 0.5000000000, x2 = —2.079196195 10~ ", x3 = —0.5235987758}

In general, fsolve(egns,vars,options) solves the system of equations represented by the
parameter egns for the variables represented by the parameter vars under optional parameters
represented by options. Under options we specify a region in which the routine is required
to search for a solution. This specification is not mandatory, and Maple determines its own
search space if the options are omitted.

EXERCISE SET 10.1

1.

2.

Show that the function F : R? — R? defined by
F(x,x2,%3) = (x1 + 23, X COS X2, X5 + X3)"

is a continuous at each point of R>.
Give an example of a function F : R?> — RR? that is continuous at each point of R?, except at (1, 0).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10.1 Fixed Points for Functions of Several Variables 637

3. Show that the first partial derivatives in Example 2 are continuous on D.
4. The nonlinear system

— x4+ D420 =18, (x;— D>+ (x, —6)> =25

has two solutions.
a.  Approximate the solutions graphically.

b. Use the approximations from part (a) as initial approximations for an appropriate function
iteration, and determine the solutions to within 10~ in the /., norm.

5. The nonlinear system
K —10x +x3+8=0, xx3+x —10x;+8=0
can be transformed into the fixed-point problem

X1 +x;+8

xlxg +x+8
10 ’ '

X = g1(x1,x2) = 10

x; = g1(x1,x2) =

a. Use Theorem 10.6 to show that G = (g;, g»)' mapping D C R? into R? has a unique fixed point
in

D= {(xl,xz)t [0 <x;,x <15}

b.  Apply functional iteration to approximate the solution.
c. Does the Gauss-Seidel method accelerate convergence?

6.  The nonlinear system
5x] —x3 =0, x3—025(sinx; + cosxy) =0

. t
has a solution near (i, i) .

a. Find a function G and a set D in R? such that G : D — R? and G has a unique fixed point
in D.

b.  Apply functional iteration to approximate the solution to within 1073 in the I, norm.

c. Does the Gauss-Seidel method accelerate convergence?

7. Use Theorem 10.6 to show that G : D C R?* — R? has a unique fixed point in D. Apply functional
iteration to approximate the solution to within 1073, using the /., norm.

05 1 1 10m — 3\’
a. Glo,x.x) = (% S5 03125 003, — 5 — ’;—0> ;

D={(x,xx)|-1<x=<1i=123}

)

13- 445 114+x -2 22+
b, G(xl,xz,X3)=< x5 +4x3 + X3 xl’ +x2)

15 ’ 10 25
D={(x,x,x)|0=<x <15,i=1,2,3}
e G(x;,x2,x3) = (1 — cos(x;xax3), | — (1 —x;)'/* — 0.05x% + 0.15x;3, %7
+0.1x3 — 0.01x, + 1)%;
D= { (5,0 | —0.1 <x; <0.1,—0.1 <x, <03,05<x; < 1.1}

1 1 17
d. G()C],Xz,X3) = <§ COS(X2X3) + 6, —6 X% + sinx3 —+ 1.06 — 01,

1 1011—3)’
—e = ).

—X1X2

20 60
D={(x,x,x3) |-1<x<1,i=1273}

)
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10.
11.

12.

13.

Numerical Solutions of Nonlinear Systems of Equations

Use functional iteration to find solutions to the following nonlinear systems, accurate to within 1073,
using the /,, norm.

a x3+x-—x=0 b. 333 —x3 =0,
X —x3—x,=0. 3037 —x; —1=0.
c. X 4x—37=0, d xX+20—x—2x=0,
X —x—5=0, X3 —8x3 + 10x3 = 0,
X1 4+x+x3—-3=0. X3 Ci—o.
Txox3

Use the Gauss-Seidel method to approximate the fixed points in Exercise 7 to within 1073, using the
. norm.

Repeat Exercise 8 using the Gauss-Seidel method.

In Exercise 10 of Section 5.9, we considered the problem of predicting the population of two species
that compete for the same food supply. In the problem, we made the assumption that the populations
could be predicted by solving the system of equations

dx (1)
e x1(1)(4 — 0.0003x; (1) — 0.0004x, (1))
and
dx; (1)
T X (1) (2 — 0.0002x; (1) — 0.0001x, (7).

In this exercise, we would like to consider the problem of determining equilibrium populations of
the two species. The mathematical criteria that must be satisfied in order for the populations to be at
equilibrium is that, simultaneously,

da(t)
dr

dxy (1) _

0 and 0.

This occurs when the first species is extinct and the second species has a population of 20,000 or
when the second species is extinct and the first species has a population of 13,333. Can an equilibrium
occur in any other situation?

Show that a function F mapping D C R” into R" is continuous at X, € D precisely when, given any
number & > 0, a number § > 0 can be found with property that for any vector norm || - ||,

IF(x) — F(xo) |l <&,

whenever X € D and ||x — Xg|| < §.

Let A be an n x n matrix and F be the function from R” to R” defined by F(x) = Ax. Use the result
in Exercise 12 to show that F is continuous on R".

10.2

Newton's Method

The problem in Example 2 of Section 10.1 is transformed into a convergent fixed-point
problem by algebraically solving the three equations for the three variables x;, x,, and x3.
It is, however, unusual to be able to find an explicit representation for all the variables. In
this section, we consider an algorithmic procedure to perform the transformation in a more
general situation.

To construct the algorithm that led to an appropriate fixed-point method in the one-
dimensional case, we found a function ¢ with the property that

gx) =x—9(x) f(x)
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10.2 Newton's Method 639

gives quadratic convergence to the fixed point p of the function g (see Section 2.4). From this
condition Newton’s method evolved by choosing ¢ (x) = 1/f’(x), assuming that f’(x) # 0.
A similar approach in the n-dimensional case involves a matrix

an(x) apx) - apx)
a(xX) ap(x) --- axy(x)

Ax) = : : : , (10.5)
X @) au®)

where each of the entries a;;(x) is a function from R” into R. This requires that A(x) be
found so that

G(x) = x — AX)"'F(x)

gives quadratic convergence to the solution of F(x) = 0, assuming that A(x) is nonsingular
at the fixed point p of G.

The following theorem parallels Theorem 2.8 on page 80. Its proof requires being able
to express G in terms of its Taylor series in n variables about p.

Theorem 10.7 Let p be a solution of G(x) = x. Suppose a number § > 0 exists with

(i) 0gi/0x;jis continuouson Ns = {x | [x —p|| <}, foreachi =1,2,...,n and
j=12,...,nm

() 9%gi(x)/ (0x;0xz) is continuous, and |8%gi(x)/ (0x;0x;)| < M for some constant
M, whenever x € Ng, foreachi = 1,2,...,n,j =1,2,...,n,and k = 1,2,...,m;

(iii) 0Jg;(p)/dxy =0, foreachi=1,2,...,nand k= 1,2,...,n.

Then a number § < § exists such that the sequence generated by x* = G(x*~P) converges
quadratically to p for any choice of x*’, provided that |x'® — p|| < §. Moreover,

2
M
=Pl = 5 IXD —pI,,  foreachk = 1. -

Ix©

To apply Theorem 10.7, suppose that A(X) is an n x n matrix of functions from R”"
into R in the form of Eq. (10.5), where the specific entries will be chosen later. Assume,
moreover, that A(X) is nonsingular near a solution p of F(x) = 0, and let b;;(x) denote the
entry of A(x)~! in the ith row and jth column.

For G(x) = x — A(x)"'F(x), we have g;(x) = x; — 27=1 b;(x) f;(x). So

n

af;j ab; .
-3 (b,,-(x)%(x) + a—x]:(x)f,-(x)> . ifi=k,

LN B
CRT n of: ab;;
-> (b,-j(x)al(x) + ,—’(x)f,-(x)) . ifi £k
i Xk dxk

Theorem 10.7 implies that we need dg;(p)/dxy = O, for eachi = 1,2,...,n and
k=1,2,...,n. This means that for i = k,

n a :
0=1- Zbu(p)a—f(p),

J=1
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The Jacobian matrix first
appeared in a 1815 paper by
Cauchy, but Jacobi wrote De
determinantibus functionalibus in
1841 and proved numerous
results about this matrix.
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that is,
n 3 :
> bi,»<p>a'—f’(p> =1 (10.6)
: Xi
j=1
When k # i,
N
0= ; by(P) - (P).
SO
n a :
> by(p)ai(p) =0. (10.7)
=1 T
The Jacobian Matrix
Define the matrix J(x) by
rof1 af1 fi
ox, (x) o (x) - ox, (%)
af2 af2 af>
Jw =™ m® @ (10.8)
Af f fn
- 3)C1 (X) axz (X) o axn (X)_

Then conditions (10.6) and (10.7) require that
A(p)_lj(p) = [, the identity matrix, so A(p) = J(p).

An appropriate choice for A(x) is, consequently, A(x) = J(x) since this satisfies condition
(iii) in Theorem 10.7. The function G is defined by

Gx) =x—Jx)'F),
and the functional iteration procedure evolves from selecting x’ and generating, for k > 1,
x® = G(x*V) = x*=D — g (x*=D) TR (x*), (10.9)

This is called Newton’s method for nonlinear systems, and it is generally expected
to give quadratic convergence, provided that a sufficiently accurate starting value is known
and that J(p)~! exists. The matrix J(x) is called the Jacobian matrix and has a number of
applications in analysis. It might, in particular, be familiar to the reader due to its application
in the multiple integration of a function of several variables over a region that requires a
change of variables to be performed.

A weakness in Newton’s method arises from the need to compute and invert the matrix
J(x) at each step. In practice, explicit computation of J(x)~! is avoided by performing
the operation in a two-step manner. First, a vector y is found that satisfies J(x*~D)y =
—F(x*~V). Then the new approximation, x*', is obtained by adding y to x*~_ Algorithm
10.1 uses this two-step procedure.
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Newton’s Method for Systems

To approximate the solution of the nonlinear system F(x) = 0 given an initial approxima-
tion X:

INPUT number n of equations and unknowns; initial approximation x = (xi,...,x,)’,
tolerance TOL; maximum number of iterations N.

OUTPUT  approximate solution x = (x,...,x,)" or a message that the number of
iterations was exceeded.

Step 1 Setk =1.

Step 2 While (k < N) do Steps 3-7.
Step 3 Calculate F(x) and J(x), where J(x);; = (3fi(x)/dx;) for 1 <i,j <n.
Step 4 Solve the n x n linear system J(x)y = —F(x).
Step 5 Setx=x+Yy.

Step 6 If ||y|| < TOL then OUTPUT (x);
(The procedure was successful.)
STOP.

Step 7 Setk =k + 1.

Step 8 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was unsuccessful.)
STOP. [ ]

Example 1 The nonlinear system

1
3X1 - COS(X2x3) — 5 = 0,

X7 —81(xy + 0.1)* + sinx3 + 1.06 = 0,

107 -3

e 12 + 20x3 + 0

was shown in Example 2 of Section 10. 1 to have the approximate solution (0.5, 0, —0.52359877)".
Apply Newton’s method to this problem with x® = (0.1,0.1, —0.1)".

Solution Define
F(x1,x2,x3) = (fi(x1,x2,x3), fo(x1,%2,%3), f3(x1,%2,%3))",
where
1
Si(x1,%2,x3) = 3x; — cos(xox3) — >
fr(x1,x2,x3) = x7 — 81(x + 0.1)% + sin x3 + 1.06,

and

107 —3

f(x1,%2,x3) = €712 4 20x3 + 3
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642 CHAPTER 10 = Numerical Solutions of Nonlinear Systems of Equations

The Jacobian matrix J(x) for this system is

3 X3 sin X2X3 X2 sin X2X3
J(x1,x2,x3) = 2x1 —162(x, + 0.1) COS X3
—Xxpe 172 —x1e 12 20

Let x® = (0.1,0.1,—0.1)". Then F(x©) = (—0.199995, —2.269833417, 8.462025346)"

and
3 9.999833334 x 107*  9.999833334 x 10~
J(x?) = 0.2 —-324 0.9950041653
—0.09900498337  —0.09900498337 20

Solving the linear system, J (x?)y©® = —F(x?) gives

0.3998696728 0.4998696782
y@ = | —0.08053315147 and x =x@ +y©® = | 001946684853
—0.4215204718 —0.5215204718

Continuing for k = 2,3,..., we have

(k) (k—1) (k—1)
X X N
k) | — (k—1) (k—1)
R Bl I + |y ’
(k) (k—=1) (k—1)
X3 X3 3
where
(k—=1)
Y1 .
y;k—l) __ (J (xgk—l)’x;k—l)’xgk—l)>> F (xgk—l)’xék—l)’xgk—l)) .
(k—1)
Y3
Thus, at the kth step, the linear system J (x*~D) y*=D = —F (x*=1) must be solved,
where
B 3 xék_l) sinxék_l)xék_l) x;k_l) sinxék_l)xék_l)
J (x*D) = 2x k=D —162 (x4 0.1 cosx D
1 2 3 s
_ (k=1) (k=1) _ (k=1) _(k=1)
_—xék D= —xik D=1 ' 20
r,k=1)
Y1
ykb = y;k—l)
(k—1)
LY3
and
3D _ oo DD _ 1
2 2
F(x0) = | (") =81 (" +0.1) 4+ sinal ™" + 1.06
(k=1) (k=1 -
e Xy +20.X§k )] + 107'5—3
The results using this iterative procedure are shown in Table 10.3. [ ]
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10.2 Newton's Method 643

Table 10.3

(k) (k) (k) _
x| x5 x5 Ix® — x®=1 o

0.1000000000 0.1000000000 —0.1000000000

0.4998696728 0.0194668485 —0.5215204718 0.4215204718
0.5000142403 0.0015885914 —0.5235569638 1.788 x 1072
0.5000000113 0.0000124448 —0.5235984500 1.576 x 1073
0.5000000000 8.516 x 10710 —0.5235987755 1.244 x 1073
0.5000000000 —1.375 x 10~ —0.5235987756 8.654 x 10710

VA W= O =

The previous example illustrates that Newton’s method can converge very rapidly once
a good approximation is obtained that is near the true solution. However, it is not always easy
to determine good starting values, and the method is comparatively expensive to employ. In
the next section, we consider a method for overcoming the latter weakness. Good starting
values can usually be found using the Steepest Descent method, which will be discussed in
Section 10.4.

Using Maple for Initial Approximations

The graphing facilities of Maple can assist in finding initial approximations to the solutions
of 2 x 2 and often 3 x 3 nonlinear systems. For example, the nonlinear system

x%—x%-i—sz =0, 2x +x§—6=0
has two solutions, (0.625204094,2.179355825)" and (2.109511920, —1.334532188)". To
use Maple we first define the two equations
eql :=x1? —x22 +2x2 = 0; eq2 :=2x1 +x2%> — 6 = 0;
To obtain a graph of the two equations for —3 < xj,x, < 3, enter the commands
with(plots): implicitplot({eq1, eq2},x1 = —6..6, x2 = —6..6);

From the graph shown in Figure 10.2, we are able to estimate that there are solutions near
(2.1,—1.3)",(0.64,2.2)", (—1.9,3.0)", and (—5.0, —4.0)". This gives us good starting values
for Newton’s method.

Figure 10.2

d—x5+2x,=0

o
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644 CHAPTER 10 = Numerical Solutions of Nonlinear Systems of Equations

The problem is more difficult in three dimensions. Consider the nonlinear system
21 —=3x +x3—4=0, 2x1+x—x3+4=0, xf+x%+x§ —4=0.

Define three equations using the Maple commands
eql :=2x1-3x24+x3—4 = 0;eq2 := 2x1+x2—x3+4 = 0;eq3 := x1°+x224+x3°—4 = 0;

The third equation describes a sphere of radius 2 and center (0, 0,0), so x1, x2, and x3 are
in [—2,2]. The Maple commands to obtain the graph in this case are

with(plots): implicitplot3d({eql, eq2,eq3}, x1 = =2.2, x2 = =2..2, x3 = =2..2);

Various three-dimensional plotting options are available in Maple for isolating a solu-
tion to the nonlinear system. For example, we can rotate the graph to better view the sections
of the surfaces. Then we can zoom into regions where the intersections lie and alter the
display form of the axes for a more accurate view of the intersection’s coordinates. For this
problem, a reasonable initial approximation is (x1,x,x3)" = (=0.5, —1.5,1.5)".

EXERCISE SET 10.2

1. Use Newton’s method with x® = 0 to compute x® for each of the following nonlinear
systems.
a. 4x12 —20x; + ix% +8=0, b. sin(4mx;xy) — 2x, —x; =0,
4 —1
1 20 _ 2 _ =
Exlxg +2x — 5% +8=0. < 47 ) (e™ e) +4eX2 2ex) 0.
c. xi1(1—=x)) +4x, =12, d. 5% —x3 =0,
(1 —2)2 + (2x, — 3)2 =25. X, — 0.25(sinx; + cosx;) = 0.
2. Use Newton’s method with x® = 0 to compute x® for each of the following nonlinear
systems.
1
a. 3x; — cos(xax3) — 3= 0, b. X +x—37=0,

—_y2_5=
4x2 — 625x3 + 23 — 1 = 0, =% =5=0,

10r — 3 x1+x2+X3—3:0.
e 4 20x; + ”T —0.
c. 15x +x§ —4x3 = 13, d. 10x, — 2x§ +x,—2x3—5=0,
x4+ 10x, — x3 = 11, 83 +4x2 —9=0,
x% — 25x3 = —22. 8xx3 +4 =0.
3. Use the graphing facilities of Maple to approximate solutions to the following nonlinear
systems.
a. 4)612 —20x; + ix% +8=0, b. sin(4mx;xy) —2x, —x; =0,
47 —1
1 2 _ 2 _ _
Exlx% % —5x,+ 8 = 0. < o ) (e™" —e) +4ex; — 2ex; = 0.
c. x1(1 —xp) +4x, = 12, d. 5x3 —x3 =0,
(1 —2)2 + (2x, — 3)2 =25. X, — 0.25(sinx; + cosx,) = 0.

4. Use the graphing facilities of Maple to approximate solutions to the following nonlinear systems
within the given limits.
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