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CHAPTER 3 DIFFERENTIATION RULES

3. To approximate a function f by a quadratic function P near a number a, it is best to write P
in the form

P(x) = A + B(x — a) + C(x — a)?
Show that the quadratic function that satisfies conditions (i), (ii), and (iii) is

P(x) = f(a) + f'(@)(x — a) + 3 f"(a)(x — a)?

4. Find the quadratic approximation to f(x) = \/x + 3 near a = 1. Graph f, the quadratic
approximation, and the linear approximation from Example 2 in Section 3.10 on a common
screen. What do you conclude?

5. Instead of being satisfied with a linear or quadratic approximation to f(x) near x = a, let’s
try to find better approximations with higher-degree polynomials. We look for an nth-degree
polynomial

T.(x)=c+ca(x—a +cx—a*+ckx—a’+ - +c(x—a)

such that T, and its first n derivatives have the same values at x = a as f and its first n
derivatives. By differentiating repeatedly and setting x = a, show that these conditions are
satisfied if ¢, = f(a), ¢ = f'(a), c; = 3 f"(a), and in general

RAC)
o
where Kl =1-2-3:4- ... -k The resulting polynomial
” (n)
T = F@) + F@x—a) + O —ap -y Dy g

2! n!
is called the nth-degree Taylor polynomial of f centered at a.

6. Find the 8th-degree Taylor polynomial centered at a = 0 for the function f(x) = cos x.
Graph f together with the Taylor polynomials T, T4, Ts, T in the viewing rectangle [—5, 5]
by [—1.4, 1.4] and comment on how well they approximate f.

3.01

HYPERBOLIC FUNCTIONS

Certain even and odd combinations of the exponential functions e* and e * arise so fre-
quently in mathematics and its applications that they deserve to be given special names.
In many ways they are analogous to the trigonometric functions, and they have the same
relationship to the hyperbola that the trigonometric functions have to the circle. For this
reason they are collectively called hyperbolic functions and individually called hyperbolic
sine, hyperbolic cosine, and so on.

DEFINITION OF THE HYPERBOLIC FUNCTIONS
) e¥—e 1
sinhx = ——— csch x = —
2 sinh x
e + e 1
cosh x = —— sech x =
2 cosh x
sinh x cosh x
tanh x = coth x = —
cosh x sinh x
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FIGURE 4
A catenary y = ¢ + a cosh(x/a)
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FIGURE 5
Idealized ocean wave
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The graphs of hyperbolic sine and cosine can be sketched using graphical addition as
in Figures 1 and 2.

FIGURE 2
y=coshx=%e*'+ %e'x

FIGURE 3
y=tanhx

Note that sinh has domain R and range R, while cosh has domain R and range [1, «).
The graph of tanh is shown in Figure 3. It has the horizontal asymptotes y = =1. (See
Exercise 23.)

Some of the mathematical uses of hyperbolic functions will be seen in Chapter 7.
Applications to science and engineering occur whenever an entity such as light, velocity,
electricity, or radioactivity is gradually absorbed or extinguished, for the decay can be rep-
resented by hyperbolic functions. The most famous application is the use of hyperbolic
cosine to describe the shape of a hanging wire. It can be proved that if a heavy flexible
cable (such as a telephone or power line) is suspended between two points at the same
height, then it takes the shape of a curve with equation y = ¢ + a cosh(x/a) called a cate-
nary (see Figure 4). (The Latin word catena means “chain.”)

Another application of hyperbolic functions occurs in the description of ocean waves:
The velocity of a water wave with length L moving across a body of water with depth d is

modeled by the function
— |9 ann( 2™
v= 27_rtanh( 1 )

where g is the acceleration due to gravity. (See Figure 5 and Exercise 49.)

The hyperbolic functions satisfy a number of identities that are similar to well-known
trigonometric identities. We list some of them here and leave most of the proofs to the
exercises.

HYPERBOLIC IDENTITIES

sinh(—x) = —sinh x cosh(—x) = cosh x
cosh’x — sinh*x = 1 1 — tanh’x = sech®
sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y
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The Gateway Arch in St. Louis was
designed using a hyperbolic casine function
(Exercise 48).
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FIGURE 6

Y4 P(coshy,sinh 1)
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FIGURE 7

i7 EXAMPLE | Prove (a) cosh?x — sinh’x = 1 and (b) 1 — tanh?x = sech?x.

SOLUTION
x+ —x\2 X _ ax\2
(a) cosh’x — sinh’x = ore (¢
2 2
_e“+2+e‘“_ e“—2+e‘“_i_]
4 4 4

(b) We start with the identity proved in part (a):
cosh’x — sinh’x =1
If we divide both sides by cosh?x, we get

sinh’x 1
cosh’x  cosh’x

or 1 — tanh®x = sech?x [ |

The identity proved in Example 1(a) gives a clue to the reason for the name “hyper-
bolic” functions:

If t is any real number, then the point P(cos ¢, sin t) lies on the unit circle x2 + y2 =1
because cos’t + sin’t = 1. In fact, t can be interpreted as the radian measure of ~POQ
in Figure 6. For this reason the trigonometric functions are sometimes called circular
functions.

Likewise, if t is any real number, then the point P(cosh ¢, sinh t) lies on the right branch
of the hyperbola x? — y? = 1 because cosh?t — sinh?t = 1 and cosh t = 1. This time, ¢
does not represent the measure of an angle. However, it turns out that f represents twice
the area of the shaded hyperbolic sector in Figure 7, just as in the trigonometric case ¢ rep-
resents twice the area of the shaded circular sector in Figure 6.

The derivatives of the hyperbolic functions are easily computed. For example,

d . d [ef—¢e* ef+ e
a(smhx)—dx< 5 )— 5 = cosh x
We list the differentiation formulas for the hyperbolic functions as Table 1. The remaining
proofs are left as exercises. Note the analogy with the differentiation formulas for trigono-
metric functions, but beware that the signs are different in some cases.

[1] DERIVATIVES OF HYPERBOLIC FUNCTIONS

d . B d L
o (sinh x) = cosh x o (csch x) = —csch x coth x
a4 (cosh x) = sinh x 9 (sech x) = —sech x tanh x
dx dx

qa _ cech? q —ccch?
I (tanh x) = sech?x ix (coth x) csch?x
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EXAMPLE 2 Any of these differentiation rules can be combined with the Chain Rule. For
instance,

—(cosh Jx) = sinh /x - f s';':/\_/i [}

INVERSE HYPERBOLIC FUNCTIONS

FIGURE 8 y=sinh'x
domain=R range =R

Formula 3 is proved in Example 3. The
proofs of Formulas 4 and 5 are requested in
Exercises 26 and 27.

You can see from Figures 1 and 3 that sinh and tanh are one-to-one functions and so they
have inverse functions denoted by sinh~' and tanh'. Figure 2 shows that cosh is not one-
to-one, but when restricted to the domain [0, «) it becomes one-to-one. The inverse hyper-
bolic cosine function is defined as the inverse of this restricted function.

(2] y=sinh"'x < sinhy=x
y=cosh”'x < coshy=x and y=0

y=tanh 'x <= tanhy=x

The remaining inverse hyperbolic functions are defined similarly (see Exercise 28).
We can sketch the graphs of sinh™', cosh™', and tanh~" in Figures 8, 9, and 10 by using
Figures 1, 2, and 3.

T
) | |
| |
| |
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| |
U ¢ | |
| |
| |
| |
FIGURE 9 y=cosh'x FIGURE 10 y=tanh'x
domain =[1,) range = [0, ) domain=(—1,1) range=R

Since the hyperbolic functions are defined in terms of exponential functions, it’s not
surprising to learn that the inverse hyperbolic functions can be expressed in terms of log-
arithms. In particular, we have:

[3] sinh'x=In(x+ /x2+1) x€R
[4] cosh™'x = In(x + x2 — l) x=1
1+
[5] tanh‘x=%|n(]_i> -1<x<l1

EXAMPLE 3 Show that sinh 'x = In(x + v/x2 + 1).
SOLUTION Let y = sinh~'x. Then
ey — efy

x=sinhy = 5
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Notice that the formulas for the derivatives of
tanh~"x and coth™'x appear to be identical. But
the domains of these functions have no numbers
in common: tanh~"x is defined for | x| < 1,
whereas coth™'x is defined for | x| > 1.

S0 e —2x—e7'=0

or, multiplying by e,
e” —2xe’ —1=0

This is really a quadratic equation in e”:
@)Y —2xe")—1=0

Solving by the quadratic formula, we get

+ JaxT T
ey=2)‘#=xtm

Note that e > 0, but x — /x2+ 1 <0 (because X< x2+ l). Thus the minus sign is
inadmissible and we have

ey =x+ x*+1
Therefore y=In(e¥) = In(x + /x% + l)
(See Exercise 25 for another method.) [ |

[6] DERIVATIVES OF INVERSE HYPERBOLIC FUNCTIONS

a (sinh~'x) = L g (csch-'x) = S
dx V1 + x? dx |x]v/x2+ 1

g (cosh™'x) = L a (sech~'x) = N
ax Vxt =1 ax X+/1 — x2

1 1
1 —x2 1 —x?

i “ly) = i “ly) —
i (tanh™'x) = i (coth~'x)

The inverse hyperbolic functions are all differentiable because the hyperbolic functions
are differentiable. The formulas in Table 6 can be proved either by the method for inverse
functions or by differentiating Formulas 3, 4, and 5.

1

\7 EXAMPLE 4 Prove thati (sinh %) = ——
dx J1+x2°

SOLUTION | Let y = sinh~'x. Then sinh y = x. If we differentiate this equation implicitly
with respect to x, we get

coshyZ—J;= 1

Since cosh?y — sinh’y = 1 and cosh y = 0, we have cosh y = /1 + sinh2y, so

ﬂ_ 1 1 _ 1
dx coshy /1 +sinhzy /T + x?
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SOLUTION 2 From Equation 3 (proved in Example 3), we have

di (sinh™'x) = 4 In(x + Vx2 + 1)
x

dx

1 d
- /v2
x+«/x2+1dx(x+ x+1)

1 X
=+ ——
x+\/)c2+l(1 \/x2+1>

Vvxr+1l+x

BCERCERINGES

1

X+

d
7 EXAMPLE 5 Findd—[tanh"(sin x)].
X

SOLUTION Using Table 6 and the Chain Rule, we have

3.11| EXERCISES

d . 1 d .
E [tanh '(sm x)] = m E (sin x)
COS X
T SO T gy e
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1-6 Find the numerical value of each expression.

I. (a) sinh 0 (b) cosh 0

2. (a) tanh 0 (b) tanh 1

3. (a) sinh(In 2) (b) sinh 2

4. (a) cosh3 (b) cosh(In 3)
5. (a) sech 0 (b) cosh™'1
6. (a) sinh 1 (b) sinh™'1

7-19 Prove the identity.

7. sinh(—x) = —sinh x
(This shows that sinh is an odd function.)

8. cosh(—x) = cosh x
(This shows that cosh is an even function.)

cosh x + sinh x = ¢*

I
Q

—X

10. cosh x — sinhx = ¢
I1. sinh(x + y) = sinh x cosh y + cosh x sinh y

12. cosh(x + y) = cosh x cosh y + sinh x sinh y

13.

14.

[17.] tanh(In x) = ol

coth®x — 1 = csch’x

tanh x + tanh y

tanh(x +y) = ————————>—
anh(x + ) 1 + tanh x tanh y

[I5.] sinh 2x = 2 sinh x cosh x
l6.

cosh 2x = cosh’x + sinh®x
-1
x2+1

I +tanhx

" 1 — tanh x

. (cosh x + sinh x)" = cosh nx + sinh nx

(n any real number)

20.

21.

22.

If tanh x = %2, find the values of the other hyperbolic
functions at x.

If coshx = % and x > 0, find the values of the other

hyperbolic functions at x.

(a) Use the graphs of sinh, cosh, and tanh in Figures 1-3 to

draw the graphs of csch, sech, and coth.
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A2 (b) Check the graphs that you sketched in part (a) by using a

graphing device to produce them.

23. Use the definitions of the hyperbolic functions to find each of
the following limits.
(a) lim tanh x (b) Iirp tanh x

(c) Iinl sinh x (d) Iirpw sinh x

(f) lim coth x

X—®

(e) lim sech x

X—

(9) Iilg coth x (h) Iirg[ coth x

(i) Iirﬂ csch x

24. Prove the formulas given in Table 1 for the derivatives of the
functions (a) cosh, (b) tanh, (c) csch, (d) sech, and (e) coth.

25. Give an alternative solution to Example 3 by letting
y = sinh™'x and then using Exercise 9 and Example 1(a)
with x replaced by y.

26. Prove Equation 4.

27. Prove Equation 5 using (a) the method of Example 3 and
(b) Exercise 18 with x replaced by y.

28. For each of the following functions (i) give a definition like
those in (2), (ii) sketch the graph, and (iii) find a formula sim-
ilar to Equation 3.
(a) csch™! (b) sech™’ (c) coth™!

29. Prove the formulas given in Table 6 for the derivatives of the
following functions.
(a) cosh™! (b) tanh™!
(d) sech™! (e) coth™'

(c) csch!

30-47 Find the derivative. Simplify where possible.

30. f(x) = tanh(1 + %)
32. g(x) = cosh(In x)
34. y = x coth(1 + x?)

31. f(x) = xsinh x — cosh x
33. h(x) = In(cosh x)
@ y= ecosh 3x

37. f(t) = sech?(e)
39. y = arctan(tanh x)

36. f(t) = cscht(1 — Incscht)
38. y = sinh(cosh x)

1 + tanh x 1 — cosh x

= 4 — _—————

40y \/ 1 — tanh x 41. G 1 + cosh x
42. y = x*sinh™'(2x) 43. y = tanh™'\/x

44. y = xtanh 'x + In /T — x2
45.) y = xsinh'(x/3) — V9 + x%
46. y =sech'\/T —x, x>0
47. y = coth™'/x2 + 1

48. The Gateway Arch in St. Louis was designed by Eero Saarinen
and was constructed using the equation

y = 211.49 — 20.96 cosh 0.03291765x

9 s0.

for the central curve of the arch, where x and y are measured
in meters and | x| < 91.20.

(a) Graph the central curve.

(b) What is the height of the arch at its center?

(c) At what points is the height 100 m?

(d) What is the slope of the arch at the points in part (c)?

49. If a water wave with length L moves with velocity » in a body

of water with depth d, then

ﬁ 2md
. tanh<—L )

where g is the acceleration due to gravity. (See Figure 5.)
Explain why the approximation

_ |9L
v 27

is appropriate in deep water.

v =

A flexible cable always hangs in the shape of a catenary

y = ¢ + acosh(x/a), where ¢ and a are constants and a > 0
(see Figure 4 and Exercise 52). Graph several members of the
family of functions y = a cosh(x/a). How does the graph
change as a varies?

51.] A telephone line hangs between two poles 14 m apart in the
shape of the catenary y = 20 cosh(x/20) — 15, where x and
y are measured in meters.
(a) Find the slope of this curve where it meets the right pole.
(b) Find the angle 6 between the line and the pole.

y

/\_/%\

52. Using principles from physics it can be shown that when a
cable is hung between two poles, it takes the shape of a curve
y = f(x) that satisfies the differential equation

&y _py

ax> T

where p is the linear density of the cable, g is the acceleration
due to gravity, and T is the tension in the cable at its lowest
point, and the coordinate system is chosen appropriately.

Verify that the function
T pqx>
— cosh <—
Py T

is a solution of this differential equation.

y=1fx



