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In this chapter we explore some of the applications of the definite integral by using it to compute areas between curves, volumes of solids, and the work done by a varyingforce. The common theme is the following general method, which is similar to the onewe used to find areas under curves: We break up a quantity into a large number ofsmall parts. We next approximate each small part by a quantity of the form andthus approximate by a Riemann sum. Then we take the limit and express as anintegral. Finally we evaluate the integral using the Fundamental Theorem of Calculus or the Midpoint Rule.
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AREAS BETWEEN CURVES

In Chapter 5 we defined and calculated areas of regions that lie under the graphs of functions. Here we use integrals to find areas of regions that lie between the graphs of twofunctions.Consider the region that lies between two curves and and be-tween the vertical lines and , where and are continuous functions andfor all in . (See Figure 1.)Just as we did for areas under curves in Section 5.1, we divide S into n strips of equalwidth and then we approximate the ith strip by a rectangle with base and height. (See Figure 2. If we like, we could take all of the sample points to be rightendpoints, in which case .) The Riemann sum

is therefore an approximation to what we intuitively think of as the area of S.

This approximation appears to become better and better as . Therefore we definethe area of the region as the limiting value of the sum of the areas of these approxi-mating rectangles.

We recognize the limit in (1) as the definite integral of . Therefore we have the fol-lowing formula for area.
The area A of the region bounded by the curves , and thelines , , where and are continuous and for all in , is

Notice that in the special case where , is the region under the graph of and our general definition of area (1) reduces to our previous definition (Definition 2 inSection 5.1).
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In the case where both and are positive, you can see from Figure 3 why (2) is true:

EXAMPLE 1 Find the area of the region bounded above by , bounded below by, and bounded on the sides by x ­ 0 and x ­ 1.
SOLUTION The region is shown in Figure 4. The upper boundary curve is and thelower boundary curve is . So we use the area formula (2) with , ,and :

M

In Figure 4 we drew a typical approximating rectangle with width as a reminder ofthe procedure by which the area is defined in (1). In general, when we set up an integralfor an area, it’s helpful to sketch the region to identify the top curve , the bottom curve, and a typical approximating rectangle as in Figure 5. Then the area of a typical rect-angle is and the equation

summarizes the procedure of adding (in a limiting sense) the areas of all the typical rectangles.Notice that in Figure 5 the left-hand boundary reduces to a point, whereas in Figure 3the right-hand boundary reduces to a point. In the next example both of the side bound-aries reduce to a point, so the first step is to find a and b.
EXAMPLE 2 Find the area of the region enclosed by the parabolas and.

SOLUTION We first find the points of intersection of the parabolas by solving their equa-tions simultaneously. This gives , or . Thus ,so or 1. The points of intersection are and .We see from Figure 6 that the top and bottom boundaries are
and

The area of a typical rectangle is

and the region lies between and . So the total area is
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Sometimes it’s difficult, or even impossible, to find the points of intersection of twocurves exactly. As shown in the following example, we can use a graphing calculator orcomputer to find approximate values for the intersection points and then proceed as before.
EXAMPLE 3 Find the approximate area of the region bounded by the curvesand
SOLUTION If we were to try to find the exact intersection points, we would have to solvethe equation

This looks like a very difficult equation to solve exactly (in fact, it’s impossible), soinstead we use a graphing device to draw the graphs of the two curves in Figure 7. Oneintersection point is the origin. We zoom in toward the other point of intersection andfind that . (If greater accuracy is required, we could use Newton’s method or arootfinder, if available on our graphing device.) Thus an approximation to the areabetween the curves is

To integrate the first term we use the subsitution . Then , andwhen . So

M

EXAMPLE 4 Figure 8 shows velocity curves for two cars, A and B, that start side by sideand move along the same road. What does the area between the curves represent? Usethe Midpoint Rule to estimate it.
SOLUTION We know from Section 5.4 that the area under the velocity curve A representsthe distance traveled by car A during the first 16 seconds. Similarly, the area under curveB is the distance traveled by car B during that time period. So the area between thesecurves, which is the difference of the areas under the curves, is the distance between thecars after 16 seconds. We read the velocities from the graph and convert them to feet persecond .s1 miyh ­
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We use the Midpoint Rule with intervals, so that . The midpoints of theintervals are , , , and . We estimate the distance between thecars after 16 seconds as follows:

M

If we are asked to find the area between the curves and wherefor some values of but for other values of , then we split thegiven region into several regions , , . . . with areas , , . . . as shown in Figure 9.We then define the area of the region to be the sum of the areas of the smaller regions , , . . . , that is, . Since

we have the following expression for A.
The area between the curves and and between andis

When evaluating the integral in (3), however, we must still split it into integrals corre-sponding to , , . . . .
EXAMPLE 5 Find the area of the region bounded by the curves , ,, and .

SOLUTION The points of intersection occur when , that is, when (since ). The region is sketched in Figure 10. Observe that when but when . Therefore the required area is

In this particular example we could have saved some work by noticing that the regionis symmetric about and so
MA ­ 2A1 ­ 2 ypy4

0 scos x 2 sin xd dx
x ­ py4

­ 2s2 2 2
­ S 1
s2 1

1
s2 2 0 2 1D 1 S20 2 1 1

1
s2 1

1
s2D

­ [sin x 1 cos x]0
py4

1 [2cos x 2 sin x]py4
py2

­ ypy4
0 scos x 2 sin xd dx 1 ypy2

py4 ssin x 2 cos xd dx
A ­ ypy2

0 | cos x 2 sin x | dx ­ A1 1 A2

py4 ø x ø py2sin x ù cos x0 ø x ø py4 cos x ù sin x0 ø x ø py2 x ­ py4sin x ­ cos x
x ­ py2x ­ 0 y ­ cos xy ­ sin xV

A2A1

A ­ yba | f sxd 2 tsxd | dx
x ­ b x ­ ay ­ tsxdy ­ f sxd3

| f sxd 2 tsxd | ­ Hf sxd 2 tsxd

tsxd 2 f sxd

when f sxd ù tsxdwhen tsxd ù f sxd

A ­ A1 1 A2 1 ? ? ?S2S1
S A2A1S2S1S xtsxd ù f sxdxf sxd ù tsxd

y ­ tsxdy ­ f sxd

­ 4s93d ­ 372 ft
y16

0 svA 2 vB d dt < Dt f13 1 23 1 28 1 29g

t4 ­ 14t3 ­ 10t2 ­ 6t1 ­ 2 Dt ­ 4n ­ 4
418 | | | | CHAPTER 6 APPLICATIONS OF INTEGRATION

0 x

y

a b
y=ƒ

y=©
S¡

S™ S£

FIGURE 9  

FIGURE 10

0 x

y

x=0

A¡

y =cos�x y=sin x

A™

π
4

π
2

x=π
2



Some regions are best treated by regarding x as a function of y. If a region is boundedby curves with equations , , , and , where and are contin-uous and for (see Figure 11), then its area is

If we write for the right boundary and for the left boundary, then, as Figure 12illustrates, we have

Here a typical approximating rectangle has dimensions and .
EXAMPLE 6 Find the area enclosed by the line and the parabola.

SOLUTION By solving the two equations we find that the points of intersection areand . We solve the equation of the parabola for x and notice fromFigure 13 that the left and right boundary curves are

We must integrate between the appropriate -values, and . Thus

M

We could have found the area in Example 6 by integrating with respect to x instead ofy, but the calculation is much more involved. It would have meant splitting the region intwo and computing the areas labeled and in Figure 14. The method we used inExample 6 is much easier. A2A1
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,
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23. , , ,
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27. , , ,
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29–30 Use calculus to find the area of the triangle with the givenvertices.
, ,

30. , ,

31–32 Evaluate the integral and interpret it as the area of aregion. Sketch the region.
31.

32.

33–34 Use the Midpoint Rule with to approximate thearea of the region bounded by the given curves.
33. , ,
34. , ,

; 35–38 Use a graph to find approximate -coordinates of the pointsof intersection of the given curves. Then find (approximately) thearea of the region bounded by the curves.
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(c) Which car is ahead after two minutes? Explain.(d) Estimate the time at which the cars are again side by side.

46. The figure shows graphs of the marginal revenue function and the marginal cost function for a manufacturer. [Recallfrom Section 4.7 that and represent the revenue andcost when units are manufactured. Assume that and aremeasured in thousands of dollars.] What is the meaning of thearea of the shaded region? Use the Midpoint Rule to estimatethe value of this quantity.

; 47. The curve with equation is called Tschirn-hausen’s cubic. If you graph this curve you will see that partof the curve forms a loop. Find the area enclosed by the loop.
48. Find the area of the region bounded by the parabola ,the tangent line to this parabola at , and the -axis.
49. Find the number such that the line divides the regionbounded by the curves and into two regionswith equal area.
50. (a) Find the number such that the line bisects thearea under the curve ,(b) Find the number such that the line bisects thearea in part (a).

Find the values of such that the area of the region boundedby the parabolas and is 576.
52. Suppose that . For what value of is the area ofthe region enclosed by the curves , ,and equal to the area of the region enclosed by thecurves , , and ?

For what values of do the line and the curveenclose a region? Find the area of the region.y ­ xysx 2
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39. Use a computer algebra system to find the exact areaenclosed by the curves and .
40. Sketch the region in the -plane defined by the inequalities, and find its area.
41. Racing cars driven by Chris and Kelly are side by side at thestart of a race. The table shows the velocities of each car (inmiles per hour) during the first ten seconds of the race. Usethe Midpoint Rule to estimate how much farther Kelly travelsthan Chris does during the first ten seconds.

42. The widths (in meters) of a kidney-shaped swimming poolwere measured at 2-meter intervals as indicated in the figure.Use the Midpoint Rule to estimate the area of the pool.

43. A cross-section of an airplane wing is shown. Measurementsof the height of the wing, in centimeters, at 20-centimeterintervals are , , , , , , , , ,, and . Use the Midpoint Rule to estimate the area ofthe wing’s cross-section.

44. If the birth rate of a population is peopleper year and the death rate is people peryear, find the area between these curves for . Whatdoes this area represent?
Two cars, A and B, start side by side and accelerate from rest.The figure shows the graphs of their velocity functions.(a) Which car is ahead after one minute? Explain.(b) What is the meaning of the area of the shaded region?
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