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APPLICATIONS OF
INTEGRATION

The volume of a sphere is
the limit of sums of volumes

of approximating cylinders.

In this chapter we explore some of the applications of the definite integral by using it
to compute areas between curves, volumes of solids, and the work done by a varying
force. The common theme is the following general method, which is similar to the one
we used to find areas under curves: We break up a quantity Q into a large number of
small parts. We next approximate each small part by a quantity of the form £(x) Ax and
thus approximate Q by a Riemann sum. Then we take the limit and express Q as an
integral. Finally we evaluate the integral using the Fundamental Theorem of Calculus
or the Midpoint Rule.



6.1 | AREAS BETWEEN CURVES

y In Chapter 5 we defined and calculated areas of regions that lie under the graphs of
y=f(x) functions. Here we use integrals to find areas of regions that lie between the graphs of two
functions.

Consider the region S that lies between two curves y = f(x) and y = t(x) and be-
tween the vertical lines x = a and x = b, where f and t are continuous functions and
f(x) = t(x) for all xin [a, b]. (See Figure 1.)

Just as we did for areas under curves in Section 5.1, we divide S into n strips of equal
width and then we approximate the ith strip by a rectangle with base Ax and height
y=9(x) f(xf) — t(x¥). (See Figure 2. If we like, we could take all of the sample points to be right

endpoints, in which case x; = x;.) The Riemann sum
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is therefore an approximation to what we intuitively think of as the area of S.
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FIGURE 2 (a) Typical rectangle (b) Approximating rectangles

This approximation appears to become better and better as n — o. Therefore we define
the area A of the region S as the limiting value of the sum of the areas of these approxi-
mating rectangles.

1] A=lim S A — (x)] Ax

o
=% =1

We recognize the limit in (1) as the definite integral of £ — g. Therefore we have the fol-
lowing formula for area.

The area A of the region bounded by the curves y = £(x), y = g(x), and the
lines x = a, x= b, where f and t are continuous and f(x) = t(x) for all xin [a, b], is

A= {1109 = g(0] dx

Notice that in the special case where t(x) = 0, S is the region under the graph of f
and our general definition of area (1) reduces to our previous definition (Definition 2 in
Section 5.1).
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FIGURE 3

A= Jf flx)dx — ng(x)dx

FIGURE 4
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FIGURE 5

yp=2x—x*

FIGURE 6

In the case where both f and t are positive, you can see from Figure 3 why (2) is true:
A = [area under y = f(x)] — [area under y = g(x)]
b b b
= j (%) dx — j g(x) dx = j [ (%) — g(x]dx

Find the area of the region bounded above by y = e*, bounded below by
y = x, and bounded on the sides by x =0 and x = 1.

The region is shown in Figure 4. The upper boundary curve is y = e* and the
lower boundary curve is y = x. So we use the area formula (2) with f(x) = e*, t(x) = x,
a=0, and b= 1:

1

1
A=f0 (e"—x)dx=ex—%x2]0
=e—3—-1l=e—15

In Figure 4 we drew a typical approximating rectangle with width Ax as a reminder of
the procedure by which the area is defined in (1). In general, when we set up an integral
for an area, it’s helpful to sketch the region to identify the top curve yr, the bottom curve
ys, and a typical approximating rectangle as in Figure 5. Then the area of a typical rect-
angle is (yr — yp) Ax and the equation

A=1im Y (yr— yp) Ax= fb(yr— ye) dx
=% ] a

summarizes the procedure of adding (in a limiting sense) the areas of all the typical
rectangles.

Notice that in Figure 5 the left-hand boundary reduces to a point, whereas in Figure 3
the right-hand boundary reduces to a point. In the next example both of the side bound-
aries reduce to a point, so the first step is to find a and b.

Find the area of the region enclosed by the parabolas y = x* and
y=2x— X%

We first find the points of intersection of the parabolas by solving their equa-
tions simultaneously. This gives x* = 2x — x%, or 2x* — 2x = 0. Thus 2x(x — 1) = 0,
so x = 0 or 1. The points of intersection are (0, 0) and (1, 1).
We see from Figure 6 that the top and bottom boundaries are

yr=2x—x* and yz=x*
The area of a typical rectangle is
(yr— yp) Ax= (2x — x¥* — x*) Ax

and the region lies between x = 0 and x = 1. So the total area is

A= jol 2x—2x)dx=2 fol (x — x¥) dx

zz[ﬁ_ﬁ]l
2 3,
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Sometimes it’s difficult, or even impossible, to find the points of intersection of two
curves exactly. As shown in the following example, we can use a graphing calculator or
computer to find approximate values for the intersection points and then proceed as before.

Find the approximate area of the region bounded by the curves
y=x/Jx*+ land y= x' — x.

If we were to try to find the exact intersection points, we would have to solve
the equation

X
o
x4+ 1 o o

This looks like a very difficult equation to solve exactly (in fact, it’s impossible), so
instead we use a graphing device to draw the graphs of the two curves in Figure 7. One
intersection point is the origin. We zoom in toward the other point of intersection and
find that x = 1.18. (If greater accuracy is required, we could use Newton’s method or a
rootfinder, if available on our graphing device.) Thus an approximation to the area
between the curves is

(s X )
A~L ﬁ—(X—X) dx

To integrate the first term we use the subsitution u = x* + 1. Then du = 2xdx, and
when x = 1.18, we have u =~ 2.39. So

239 du 1.18

ai vl NG L
2.39 x° x° 18
= Vel - [? - 7]0
(1.18)° (1.18)?

=239 -1- +

239 -1 5 >
~ (0.785

Figure 8 shows velocity curves for two cars, A and B, that start side by side
and move along the same road. What does the area between the curves represent? Use
the Midpoint Rule to estimate it.

We know from Section 5.4 that the area under the velocity curve A represents
the distance traveled by car A during the first 16 seconds. Similarly, the area under curve
Bis the distance traveled by car B during that time period. So the area between these
curves, which is the difference of the areas under the curves, is the distance between the
cars after 16 seconds. We read the velocities from the graph and convert them to feet per

. 5280
second (1 mi/h = 3 ft/s).
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FIGURE 9

FIGURE 10
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We use the Midpoint Rule with n = 4 intervals, so that A¢ = 4. The midpoints of the
intervals are 4 = 2, &, = 6, 5 = 10, and 7, = 14. We estimate the distance between the

cars after 16 seconds as follows:

jow (04 — vg) dt =~ At[13 + 23 + 28 + 29]
— 4(93) = 372 fit

If we are asked to find the area between the curves y = f(x) and y = t(x) where
f(x) = t(x) for some values of x but t(x) = f(x) for other values of x, then we split the
given region S into several regions Si, S, . . . with areas A, Az, . . . as shown in Figure 9.
We then define the area of the region S to be the sum of the areas of the smaller regions
S, S, that is, A = A; + A; + - - -. Since

f(x) — g(x) when f(x)

| f(x) — g(x)| = {g(X) — f(x) when g(x)

we have the following expression for A.

The area between the curves y = f(x) and y = g(x) and between x = a and
x=bis

A= Lb| f(x) — g(»)| dx

When evaluating the integral in (3), however, we must still split it into integrals corre-
sponding to Ay, A, . . ..

Find the area of the region bounded by the curves y = sin x, y = cos x,
x=0,and x= 7/2.

The points of intersection occur when sin x = cos x, that is, when x = /4
(since 0 < x < 7r/2). The region is sketched in Figure 10. Observe that cos x = sin x
when 0 < x < 7/4 but sin x = cos x when 7/4 < x < 7/2. Therefore the required

area is

/2
A=f0 |cos x — sin x| dx = A + A4,

/4 , /2
= foﬂ (cos x — sin x) dx + JZ (sin x — cos x) dx
0,

. /4 . /2
= [sm Xx + cos X]O + [—cos X — sin x]v/4

=<%+%—0—1>+<—0—1+%+%>
=2y2-2

In this particular example we could have saved some work by noticing that the region
is symmetric about x = 7/4 and so

A=2A =2 LWM (cos x — sin x) dx
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Some regions are best treated by regarding x as a function of y. If a region is bounded
by curves with equations x = f(y), x = g(y), y = ¢, and y = d, where fand t are contin-
uous and f(y) = g(y) for ¢ < y < d (see Figure 11), then its area is

A= f[f(y) —g(y]dy

y y
y=d d
L X X
fay
x=g(y) x= f(y) [ Ay
Xp XL

c——— —

y ol
0 X 0 X

FIGURE 11 FIGURE 12

If we write x for the right boundary and x; for the left boundary, then, as Figure 12
illustrates, we have

d
A=j (xp — x1) dy
Here a typical approximating rectangle has dimensions xz — x; and Ay.

Find the area enclosed by the line y = x — 1 and the parabola

v (5.4) y*=2x+6.
4 +
10, By solving the two equations we find that the points of intersection are
LTy (=1, —2) and (5, 4). We solve the equation of the parabola for x and notice from
p=y+1 Figure 13 that the left and right boundary curves are
0 x x =3y’ —3 xp=y+1
(=1,-2) 172 We must integrate between the appropriate y-values, y = —2 and y = 4. Thus
4
A= L (xr — xi) dy
FIGURE 13
— "+ 1 -y -3 ay
Y
=y aay
y= \/2x +6 -2
\ Ly, Y 4
=—— |-+ +14
2 ( 3 ) 2 "V,
-3 4, |° =64 +8+16— (3 +2-8 =18
/ ’ We could have found the area in Example 6 by integrating with respect to x instead of
y=—2x+6 ¥, but the calculation is much more involved. It would have meant splitting the region in

two and computing the areas labeled A; and A, in Figure 14. The method we used in
FIGURE 14 Example 6 is much easier.



420 CHAPTER 6 APPLICATIONS OF INTEGRATION

6. EXERCISES

Find the area of the shaded region.

Iy y=>5x—x* 2. y
y:\/x+2
(4, 4) // x=2
y=x 1 X
y_x+1
\ X

2 x:y274y/
x=y' - =1
= 3.3 >
7%(26“" X
T X
x=2y—y’

Sketch the region enclosed by the given curves. Decide
whether to integrate with respect to x or y. Draw a typical approx-
imating rectangle and label its height and width. Then find the
area of the region.

5. y=x+1, y=9—-x% x=-1, x=2
6. y=sinx, y=¢e% x=0, x=7/2
1. y=x, y:XZ

8. y=x"—2x y=x+4

9] y=1/x y=1/x* x=2

10. y=1+x, y=0@+x/3

. y=x y*=x

12. y=x*, y=4dx—x*

Bly=12-x, y=x-6

14 y=cosx, y=2—cosx, 0<x<2m
I5. y=tanx, y=2sinx, —w/3<x<a/3
|6-)’=X3*X, y=3x

|7'}’=\/;1 }/=%X, x=9

18. y=8 -« y=x' x=-3, x=3
19. x=2y%, x=4+y*

20. 4x+ P =12, x=y

1<

R x=1-y%, x=y'—1

22. y=sin(wx/2), y=x

23. y=cosx, y=sin2x, x=0, x=7/2
24. y=cosx, y=1—cosx, O0<x=<
25 y=x% y=2/(x*+1)

26. y=|x|, y=x*-2

27. y=1/x, y=x y=1x x>0

28. y=3x% y=8x" 4x+y=4, x=0

Use calculus to find the area of the triangle with the given
vertices.

290(0,0, (2,1), (-1,6)

30. (0,5), (2,-2), (51)

Evaluate the integral and interpret it as the area of a
region. Sketch the region.

31. fow/z |sin x — cos 2x| dx

32. j04|\/x+ 2 — x| dx

Use the Midpoint Rule with n = 4 to approximate the
area of the region bounded by the given curves.

33. y=sin¥(mx/4), y= cos¥(mx/4), 0<x<1

3. y=Yl6 —x*, y=x x=0

Use a graph to find approximate x-coordinates of the points
of intersection of the given curves. Then find (approximately) the
area of the region bounded by the curves.

35. y= xsin(x?), y=x*
36. y=e€', y=2—x*
37. y=3x* - 2x, y=x"—3x+4

38. y=xcosx, y=x"



39. Use a computer algebra system to find the exact area
enclosed by the curves y = x> — 6x* + 4xand y = x.

40. Sketch the region in the xy-plane defined by the inequalities
x—2y*=0,1—x—|y| =0and find its area.

41. Racing cars driven by Chris and Kelly are side by side at the
start of a race. The table shows the velocities of each car (in
miles per hour) during the first ten seconds of the race. Use
the Midpoint Rule to estimate how much farther Kelly travels
than Chris does during the first ten seconds.

42. The widths (in meters) of a kidney-shaped swimming pool
were measured at 2-meter intervals as indicated in the figure.
Use the Midpoint Rule to estimate the area of the pool.

43. A cross-section of an airplane wing is shown. Measurements
of the height of the wing, in centimeters, at 20-centimeter
intervals are 5.8, 20.3, 26.7, 29.0, 27.6, 27.3, 23.8, 20.5, 15.1,
8.7, and 2.8. Use the Midpoint Rule to estimate the area of
the wing’s cross-section.

—e

f———200cm———|

44. 1f the birth rate of a population is b(f) = 2200e"%*! people
per year and the death rate is d() = 1460&"°'* people per
year, find the area between these curves for 0 < ¢ < 10. What
does this area represent?

Two cars, A and B, start side by side and accelerate from rest.
The figure shows the graphs of their velocity functions.
(a) Which car is ahead after one minute? Explain.
(b) What is the meaning of the area of the shaded region?
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(c) Which car is ahead after two minutes? Explain.
(d) Estimate the time at which the cars are again side by side.

v

0 1 2 t (min)

46. The figure shows graphs of the marginal revenue function R’
and the marginal cost function C’ for a manufacturer. [Recall
from Section 4.7 that R(x) and ((x) represent the revenue and
cost when x units are manufactured. Assume that Rand C are
measured in thousands of dollars.] What is the meaning of the
area of the shaded region? Use the Midpoint Rule to estimate
the value of this quantity.

47. The curve with equation y* = x*(x + 3) is called Tschirn-

hausen’s cubic. If you graph this curve you will see that part
of the curve forms a loop. Find the area enclosed by the loop.

48. Find the area of the region bounded by the parabola y = x?,
the tangent line to this parabola at (1, 1), and the x-axis.

49. Find the number b such that the line y = b divides the region
bounded by the curves y = x* and y = 4 into two regions
with equal area.

50. (a) Find the number a such that the line x = a bisects the
area under the curve y = I/XZ, 1< x<4.
(b) Find the number b such that the line y = b bisects the
area in part (a).

[51.] Find the values of ¢ such that the area of the region bounded
by the parabolas y = x> — c?and y = ¢? — x* is 576.

52. Suppose that 0 < ¢ < /2. For what value of c is the area of
the region enclosed by the curves y = cos x, y = cos(x — ¢),
and x = 0 equal to the area of the region enclosed by the
curves y = cos(x — ¢), x=m,and y = 07

[53.] For what values of m do the line y = mx and the curve
y = x/(x* + 1) enclose a region? Find the area of the region.



