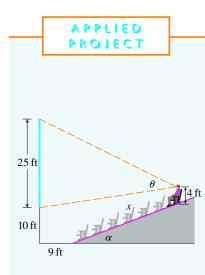
446 CHAPTER 6 APPLICATIONS OF INTEGRATION



(AS) WHERE TO SIT AT THE MOVIES

A movie theater has a screen that is positioned 10 ft off the floor and is 25 ft high. The first row of seats is placed 9 ft from the screen and the rows are set 3 ft apart. The floor of the seating area is inclined at an angle of $\alpha = 20^{\circ}$ above the horizontal and the distance up the incline that you sit is *x*. The theater has 21 rows of seats, so $0 \le x \le 60$. Suppose you decide that the best place to sit is in the row where the angle θ subtended by the screen at your eyes is a maximum. Let's also suppose that your eyes are 4 ft above the floor, as shown in the figure. (In Exercise 70 in Section 4.7 we looked at a simpler version of this problem, where the floor is horizontal, but this project involves a more complicated situation and requires technology.)

I. Show that

where $\theta = \arccos\left(\frac{a^2 + b^2 - 625}{2ab}\right)$ $a^2 = (9 + x\cos\alpha)^2 + (31 - x\sin\alpha)^2$ $b^2 = (9 + x\cos\alpha)^2 + (x\sin\alpha - 6)^2$

- **2.** Use a graph of *θ* as a function of *x* to estimate the value of *x* that maximizes *θ*. In which row should you sit? What is the viewing angle *θ* in this row?
- **3.** Use your computer algebra system to differentiate θ and find a numerical value for the root of the equation $d\theta/dx = 0$. Does this value confirm your result in Problem 2?
- **4.** Use the graph of θ to estimate the average value of θ on the interval $0 \le x \le 60$. Then use your CAS to compute the average value. Compare with the maximum and minimum values of θ .

REVIEW

CONCEPT CHECK

I. (a) Draw two typical curves y = f(x) and y = g(x), where $f(x) \ge g(x)$ for $a \le x \le b$. Show how to approximate the area between these curves by a Riemann sum and sketch the corresponding approximating rectangles. Then write an expression for the exact area.

6

- (b) Explain how the situation changes if the curves have equations x = f(y) and x = g(y), where $f(y) \ge g(y)$ for $c \le y \le d$.
- **2.** Suppose that Sue runs faster than Kathy throughout a 1500-meter race. What is the physical meaning of the area between their velocity curves for the first minute of the race?
- **3.** (a) Suppose *S* is a solid with known cross-sectional areas. Explain how to approximate the volume of *S* by a Riemann sum. Then write an expression for the exact volume.

EXERCISES

1-6 Find the area of the region bounded by the given curves.

I. $y = x^2$, $y = 4x - x^2$

2. y = 1/x, $y = x^2$, y = 0, x = e

- (b) If *S* is a solid of revolution, how do you find the cross-sectional areas?
- 4. (a) What is the volume of a cylindrical shell?
 - (b) Explain how to use cylindrical shells to find the volume of a solid of revolution.
 - (c) Why might you want to use the shell method instead of slicing?
- **5.** Suppose that you push a book across a 6-meter-long table by exerting a force f(x) at each point from x = 0 to x = 6. What does $\int_0^6 f(x) dx$ represent? If f(x) is measured in newtons, what are the units for the integral?
- 6. (a) What is the average value of a function *f* on an interval [*a*, *b*]?
 - (b) What does the Mean Value Theorem for Integrals say? What is its geometric interpretation?

3. $y = 1 - 2x^2$, y = |x|

4. x + y = 0, $x = y^2 + 3y$

5. $y = \sin(\pi x/2), \quad y = x^2 - 2x$

CHAPTER 6 REVIEW |||| 447

6. $y = \sqrt{x}$, $y = x^2$, x = 2

7–11 Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis.

7. y = 2x, $y = x^2$; about the *x*-axis

- **8.** $x = 1 + y^2$, y = x 3; about the *y*-axis
- **9.** x = 0, $x = 9 y^2$; about x = -1

10.
$$y = x^2 + 1$$
, $y = 9 - x^2$; about $y = -1$

II. $x^2 - y^2 = a^2$, x = a + h (where a > 0, h > 0); about the *y*-axis

12–14 Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis.

- **12.** $y = \tan x$, y = x, $x = \pi/3$; about the *y*-axis
- **13.** $y = \cos^2 x$, $|x| \le \pi/2$, $y = \frac{1}{4}$; about $x = \pi/2$
- **14.** $y = \sqrt{x}, y = x^2$; about y = 2
- **I5.** Find the volumes of the solids obtained by rotating the region bounded by the curves y = x and $y = x^2$ about the following lines.

(a) The *x*-axis (b) The *y*-axis (c) y = 2

- 16. Let R be the region in the first quadrant bounded by the curves y = x³ and y = 2x x². Calculate the following quantities.
 (a) The area of R
 - (b) The volume obtained by rotating \mathcal{R} about the *x*-axis
 - (c) The volume obtained by rotating ${\mathcal R}$ about the *y*-axis
- 17. Let R be the region bounded by the curves y = tan(x²), x = 1, and y = 0. Use the Midpoint Rule with n = 4 to estimate the following quantities.
 (a) The area of R
 - (b) The volume obtained by rotating \Re about the *x*-axis
- **18.** Let \Re be the region bounded by the curves $y = 1 x^2$ and $y = x^6 x + 1$. Estimate the following quantities.
 - (a) The *x*-coordinates of the points of intersection of the curves (b) The area of \mathcal{R}
 - (c) The volume generated when \Re is rotated about the *x*-axis
 - (d) The volume generated when \Re is rotated about the *y*-axis

19–22 Each integral represents the volume of a solid. Describe the solid.

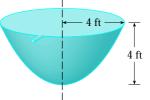
19.
$$\int_{0}^{\pi/2} 2\pi x \cos x \, dx$$
20.
$$\int_{0}^{\pi/2} 2\pi \cos^{2} x \, dx$$
21.
$$\int_{0}^{\pi} \pi (2 - \sin x)^{2} \, dx$$
22.
$$\int_{0}^{4} 2\pi (6 - y)(4y - y^{2}) \, dy$$

23. The base of a solid is a circular disk with radius 3. Find the volume of the solid if parallel cross-sections perpendicular to

the base are isosceles right triangles with hypotenuse lying along the base.

- **24.** The base of a solid is the region bounded by the parabolas $y = x^2$ and $y = 2 x^2$. Find the volume of the solid if the cross-sections perpendicular to the *x*-axis are squares with one side lying along the base.
- **25.** The height of a monument is 20 m. A horizontal cross-section at a distance *x* meters from the top is an equilateral triangle with side $\frac{1}{4}x$ meters. Find the volume of the monument.
- 26. (a) The base of a solid is a square with vertices located at (1, 0), (0, 1), (-1, 0), and (0, -1). Each cross-section perpendicular to the *x*-axis is a semicircle. Find the volume of the solid.
 - (b) Show that by cutting the solid of part (a), we can rearrange it to form a cone. Thus compute its volume more simply.
- **27.** A force of 30 N is required to maintain a spring stretched from its natural length of 12 cm to a length of 15 cm. How much work is done in stretching the spring from 12 cm to 20 cm?
- **28.** A 1600-lb elevator is suspended by a 200-ft cable that weighs 10 lb/ft. How much work is required to raise the elevator from the basement to the third floor, a distance of 30 ft?
- **29.** A tank full of water has the shape of a paraboloid of revolution as shown in the figure; that is, its shape is obtained by rotating a parabola about a vertical axis.
 - (a) If its height is 4 ft and the radius at the top is 4 ft, find the work required to pump the water out of the tank.
 - (b) After 4000 ft-lb of work has been done, what is the depth of the water remaining in the tank?

AM



- 30. Find the average value of the function f(t) = t sin(t²) on the interval [0, 10].
- **31.** If *f* is a continuous function, what is the limit as $h \rightarrow 0$ of the average value of *f* on the interval [x, x + h]?
- **32.** Let \Re_1 be the region bounded by $y = x^2$, y = 0, and x = b, where b > 0. Let \Re_2 be the region bounded by $y = x^2$, x = 0, and $y = b^2$.
 - (a) Is there a value of *b* such that \Re_1 and \Re_2 have the same area?
 - (b) Is there a value of *b* such that R₁ sweeps out the same volume when rotated about the *x*-axis and the *y*-axis?
 - (c) Is there a value of *b* such that \Re_1 and \Re_2 sweep out the same volume when rotated about the *x*-axis?
 - (d) Is there a value of *b* such that R₁ and R₂ sweep out the same volume when rotated about the *y*-axis?